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1  Introduction
Barriers between various sorts of environments in computational systems are being
breached. Independently developed applications need to use each other’s services
and share each other’s data despite a host of differences in the ways they were devel-
oped and the ways they operate.

Object orientation offers some tools for solving such problems. Ironically, though,
object orientation also introduces interoperability problems of its own. Our exami-
nation of object orientation and interoperability will sketch the problems and solu-
tions, focusing in particular on object-oriented database.



2

2  Dimensions of the Interoperability Problem
Interoperating applications are often developed independently of each other in envi-
ronments that may differ in the following dimensions:

• Locations.

• Machine architectures.

• Operating systems.

• Programming languages.

• Models of information.

Applications can interoperate along the following dimensions:

• “Horizontal” peer-to-peer sharing of services and information, such as an
editor invoking a spreadsheet processor to embed a spreadsheet in a docu-
ment.

• “Vertical” cascading through levels of implementation. A student registra-
tion service may use a database service which in turn uses a file manager
which uses a device driver.

• “Time-line” through the life cycle of an application. Enterprise modeling
may be done in terms of one set of constructs which are translated into
constructs of the application programming language which are compiled into
constructs of the run-time environment. Or, a graphical language used to
capture a user’s conceptual model of a business domain is translated into a
computer-executable simulation language, with the results of the simulation
then being input either to an analysis tool to allow refinement of the simula-
tion, or to a report generator to produce the final result.

• Others, e.g., the “viewpoints” of the ISO/CCITT Reference Model for Open
Distributed Processing (RM-ODP) [16]:

– Enterprise viewpoint

– Information viewpoint

– Computational viewpoint

– Engineering viewpoint

– Technology viewpoint

Interoperation is concerned with such things as:

• Application interconnection:

– Finding services and information in a distributed environment.

– Coping with operational differences between requesters and providers of
services, such as interface/communication protocols, synchronization,
exception handling, work coordination, resource management, etc.

• Information compatibility.
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3  Application Interconnection
Problems of application interconnection are addressed by distributed application
architectures such as the Common Object Request Broker Architecture (CORBA),
shown in Figure 1, being developed by the Object Management Group [13, 14, 15].

Requests are submitted via a stub or the dynamic invocation interface and inter-
preted via an object adapter, a skeleton, and an implementation (performer). The
ORB Core itself supports a performer model [Section 5.2] defined by its Interface
Definition Language (IDL) [15]. Mapping of models is possible on two sides:

• Applications are expected to invoke local routines to generate ORB requests
in IDL. Such routines could map various capabilities into IDL form,
supported by appropriate interpretations in the application compiler, adapter,
skeleton, and implementation to which the requests are routed.

• Specific mechanisms of how an implementation is chosen and activated are
determined by specific implementations of ORB cores, adapters, and skele-
tons.

4  Information Compatibility

4.1 Problems

Problems of information compatibility arise in the following dimensions (many are
illustrated in [7]):

• Different data models:

– Traditional database models: relational, hierarchical, network.

– File systems.

Files often don’t even have a schema of their own. File format descrip-
tions are buried in applications, allowing different applications to have
different views of the same file.

Client
Application

Object
Implementation

Dynamic
Invocation
Interface

IDL
Stubs

IDL Object
AdapterSkeleton

ORB Core

Figure 1. CORBA.
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– Object-oriented models (there are many! [Section 5]).

– New forms: complex structures, spatial data, text, hypertext, blobs,
multimedia.

• Differences in enterprise views of similar domains, reflected in data and/or
process differences. These might represent local differences in policies or
business rules.

– At the schema level:

Some businesses have several salesman per territory, others give several
territories to one salesman.

Some schools have teaching assistants, others don’t. TeachingAssistant
is a subtype of Student at some schools, a subtype of GraduateStudent at
other schools.

– Differences in abstraction level/granularity:

One source has motor vehicles, the other has cars, trucks, buses, motor-
cycles, etc.

– At the instance level:

Sales territories are partitioned differently at different companies.

Different schools offer different courses.

• Different schemas for the same domain, even within the same model and
enterprise view:

– Different names or spellings for schema elements.

– Single vs. multiple elements for addresses, dates, names, etc.

– Cross-level mappings:

Jobs are data values in some sources, distinct tables or subtypes in others.

– Other structural differences.

• Data element (representation) differences:

– Data types, unit of measure, precision.

– Notational differences such as spelling, punctuation, capitalization, or
omitted parts in names, addresses, document citations, etc.

• Discrepancies in information values:

– Errors.

– Out of date information (different currency levels).

– Different opinions, e.g., ratings of movies or restaurants.

– Subtle unspecified differences in definition, e.g., distances as airline
miles vs. driving miles.
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4.2 A Framework

We focus on peer-to-peer interoperation, and particularly on data sharing, i.e.,
making data from multiple sources available to an application/user.

A general framework for integrating the information in multiple data sources, such
as described in [12], involves zero or more of the following components:

• External sources.

• Exported schema of each external data source.

• Imported schema of each source in a common model.

• Locally managed data.

• Unified schemas, reconciling discrepancies of all sorts.

• End user views, possibly in various models.

A sample framework is shown in Figure 2.

There are many variations on the basic framework, with no clear winners emerging
yet. Different situations require different approaches, and it is not clear whether any
one paradigm will dominate. Some variations:

Figure 2. Integration framework.
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• Framework architecture: there might be zero or several of some components.

• Characteristics of external sources:

– Degree of autonomy.

– Possible presence of an application serving as an “agent” of the
importing system.

– Degree of heterogeneity.

– Distribution (physical location and connectivity).

– Variations in services available, e.g., queries and transactions.

• Inter-component processing:

– Manual vs. automated import.

– Query processing/optimization strategies.

– Transaction management.

– Propagation of updates, in both directions.

• Integration scope:

– Across multiple enterprises (least feasible).

– Across one whole enterprise.

– Localized application domain (most feasible).

• When the framework is developed:

– Statically in advance (not practical for large scope).

– Incrementally as needed, accumulating an expanding framework.

(Both of those have to cope with schema evolution.)

– Ad hoc: as needed, then discarded.

• End user capabilities:

– Read-only vs. update of external sources.

– Current vs. snapshot view of external data.

– Integration with locally maintained data.

We will focus on information mapping concerns.

4.3 Object Orientation as a Solution

Certain OO features are particularly useful for solving problems of information
compatibility:

• Object identity provides a basis for correlating information about “the same
thing” from different sources.

• Subtyping allows reconciliation of different levels of abstraction.



7

• Computationally complete behavior specification (beyond relational view
definition) allows complex resolution of information discrepancies.

• The notion of overloaded operators can be extended to help correlate object
identities and reconcile information discrepancies.

Note that we are describing language for expressing solutions, not facilities for
discovering them. Solutions will be illustrated in terms of a participant model
[Section 5.2] in order to use its higher level of semantic abstraction [2, 5].

4.3.1 Stages

Access to external data in multiple sources involves:

• Discovering/identifying relevant external sources.

• Importing their schemas into a common model.

After importing into a common model, the “home” system has a schema of
the external data while the external sources serve as underlying “storage
managers” for the data. At this stage the imported data from multiple sources
is in a common form accessible by end users, but without identities corre-
lated or discrepancies reconciled. The schema is the simple union of the
imported schemas, possibly along with schemas for locally maintained data
as well.

• Integrating into a unified view:

– Integrate the schemas.

– Correlate object identity.

– Reconcile discrepancies in information content.

• Executing user requests.

We will focus on import and integration, which are the main areas to which object-
oriented techniques can be usefully applied. Import and integration correspond to
“levels” in the schema, and need not correspond to a chronological sequence.

Schemas don’t have to be statically pre-defined or persistently maintained [Section
4.2]. However, the application/user does need some coherent picture of the informa-
tion being used. At minimum, what we describe here is a mental model, or some
implicit descriptive mechanism transiently created at run time. Renaming
(mentioned below) doesn’t have to be explicitly specified, but could be inferred
from knowledge of synonyms and variant spellings. Of course, the more heuristic
the more the risk of error. Algorithms for correlating identities and reconciling
information do need to be expressed somewhere.
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4.3.2 Import

Suppose we are accessing information about students, teachers, and courses from
various universities. One of the university sources might export a relational schema
as shown in Figure 3.

Type relationships can be inferred from certain inclusion dependencies [3] (indi-
cated as⊆ in Figure 3). Simple key inclusions imply subtypes, so the Teacher type
is imported as a subtype of Person. Mutual key inclusions imply vertical parti-
tioning, so StudentHealth and StudentAcad are recognized as providing data about
the same objects, and hence are imported as a single Student type (also a subtype of
Person). Courses are imported as a distinct type. Some foreign keys imply that rela-
tions represent relationships rather than types, and are imported into whatever
mechanism represents relationships in the object model. Thus the Grades relation is
imported as a multi-argument function in a functional object model.

The university uses its own “person identification numbers” (Pin) to identify people,
since not everybody has a social security number. In the external relational data, a
person corresponds to a Pin value, which is an integer. In the OO model, a person
has an identity as a distinct object, separate from the integer Pin value which is one
of its properties. Put simply, an instance of Person is not an integer.

In a locally managed OODBMS, objects are explicitly created and deleted. An
explicit object creation operation provides a semantic basis for object identity:
distinct creation events give rise to distinct objects. (In some implementations,
creation generates a unique oid for the object as a “birthmark”). An explicit deletion
operation allows the DBMS to manage referential integrity, removing all stored
references to the deleted object (or disallowing the deletion while there is such
stored data). Such facilities are not available for data imported from fully autono-
mous external sources. The external data will simply contain different numbers of
students at different times, with the OODBMS getting no intervening notification of
creation or deletion.

Since there are no creation events on which to base object identity, such identity
must be based on data in the external source. Essentially, a set of values has to be
defined such that an instance of the imported type exists for each value in the set.
We can say that an imported type “produces” an instance corresponding to each
value in its “producer set”. The producer set might be simply defined, as with the
Pin numbers used by this university to identify people. In the absence of such simple
keys, it might be something more complex, such as a composite key consisting of
Name, Address, and Birthday. (In general, imported object types don’t have to
correspond to primary keys of relations.)

As mentioned, the values in the producer set are not the same things as the instances
of the type. Although Pin integer values are not themselves instances of Person,
there is a one-to-one correspondence. Whenever a certain Pin value is detected in
the external data, a corresponding Person instance exists. When the Pin value
vanishes, the corresponding Person instance ceases to exist. If the Pin value reap-
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Salary: Teacher→Real
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Textbook: Course→Char
ACMequiv: Course→Char

Grade: (Student, Course)→Integer
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Pin Gpa Major CNum Units Text ACMeq

Imported OO Schema

Exported Relational Schema

Figure 3. University data example.
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pears, so does the Person instance. Such “produced objects” have their existence
defined by a rule, rather than by creation events (like the “imaginary objects” of [1]).

Object identity has to be carefully managed among different types. Common values
in different producer sets may or may not correspond to the same object. In the
university example, course numbers (CNum values) might accidentally match Pin
values, yet courses and persons are obviously not the same thing. Furthermore,
several universities might use Pin numbers independently. Different students at
different universities might have the same Pin number — and a student who has
attended several universities will probably have a different Pin number at each.

A conservative strategy is to assume that, in the absence of other information, all
imported types are disjoint from each other, i.e., they have no instances in common.
A plausible implementation strategy would be to construct an object identifier as a
concatenation of a producer value with a unique “tag” associated with each
imported type.

The disjointness assumption can be relaxed, for example, if inclusion dependencies
are known for a relational data source [3]. The disjointness assumption is clearly
inapplicable in the case of vertical partitioning, since the underlying relations are
imported into a single type. The assumption is also inappropriate for subtypes, as
indicated by key inclusion dependencies. It does not make sense to treat Teacher or
Student as being disjoint from the Person supertype, since the instances of Teacher
or Student are obviously known to be instances of Person. Thus, in implementation
terms, these three types should all use the same tag in their produced oid’s. (Note
that we have no information as to whether or not Teacher and Student are disjoint
from each other.)

Naming conventions generally require types to be uniquely named, so types
imported from different sources might have to be renamed (e.g., if they are imported
from external relations having the same name). Thus, if we are importing data from
“Eastern University” and “Western University”, the imported types might be named
EPerson, WPerson, ETeacher, WTeacher, and so on.

The imported functions (operations) only have to be uniquely named within their
argument types, since object systems support overloading (polymorphism).
However, we should carefully distinguish between specific and generic functions.
Thus, for example, the functions named “Address” which are defined on EPerson
and WPerson are two distinct specific functions, corresponding to a single generic
function named “Address”. Specific functions can be uniquely named by appending
their argument types, e.g., EPerson.Address and WPerson.Address.

We will later see that it is very useful to rename functions so that they have the same
name if and only if they represent “semantically equivalent” information — a
concept which we will not define further. Thus, for example, all functions which
provide addresses should be named “Address”, and no other function should have
that name.
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If no further integration is defined, imported data can be made accessible to end
users uniformly via the object model of the importing OODBMS. However, it is
uncorrelated. Objects imported from different sources appear distinct, so that a
person who has attended several universities appears to be several distinct persons.
Courses given by one university are different objects from those given at another.
The schemas associated with the different sources might be different (though we
will assume they are similar for the moment).

For retrieval purposes, imported data can be indistinguishable from locally main-
tained data. Update may be restricted, depending on the level of interaction
supported by the autonomous external source.

4.3.3 Schema Integration

Schema integration is a problem when imported schemas from “similar” domains
are structurally different, yet need to be presented as a single schema to the end user
[4]. A typical problem is illustrated in Figure 4.

Object technology is generally useful here to the extent that it is capable of repre-
senting various levels of abstraction in a type hierarchy. However, the specific
problem of unifying these into a coherent schema for the end user is not in itself
facilitated by object oriented techniques. We will not pursue this problem in this
paper.

4.3.4 Correlating Identities

Correlating identities requires a mechanism for establishing that several imported
things should be treated as being the same object. The problem is simpler when the
things being made equal are imported from different sources, but we will later
consider cases where things imported from thesame source should be considered
equal (“localized equivalence”) [Section 4.3.6]. In the absence of localized equiva-
lence, identity correlation can be described in terms of a “single-viewpoint”
approach, whereby the equal things are immediately treated as the same object on
import. Localized equivalence requires a more complex description, involving an
“underlying viewpoint” in which the imported things are distinct objects, and an
“integrated viewpoint” in which they appear as one.

Care need be taken to preserve the semantics of equality when treating things as
being the same [8]. In the single-viewpoint approach, x=y does not have the sense
of two objects which become one object. It simply means that the variables x and y
refer to one and the same object (whether or not they are implemented as having the
same oid).

Equality is anequivalence relation, hence the following axioms hold:

E1: ∀x, x=x (reflexivity).

E2: ∀x∀y, x=y ⇒ y=x (symmetry).

E3: ∀x∀y∀z, x=y & y=z⇒ x=z (transitivity).
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Equality impliessubstitutability:

E4: ∀x∀y∀f, x=y ⇒ f(x)=f(y);
also, f(x) and f(y) cause the same conditions and side effects.

Equality impliessingularity, i.e., there is just one object:

E5: ∀x∀y, x=y ⇒ {x,y}={x}, or equivalently, Card({x,y})=1.

E5 might not be an independent axiom, depending on how set construction is
defined in terms of equal elements. But it doesn’t hurt to emphasize it here.

A typical equality specification might take the form

EPerson.Ssn(x)=WPerson.Ssn(y)⇒ x=y.

An equality specification essentially involves a binary predicate e(x,y) such that

∀x∀y, e(x,y)⇒ x=y

NEmployee

NStudent NProfessor

NUnderGrad NGraduate

NInstructor NAdmin

NTchAsst

WEmployee

WStudent

WProfessor

WUnderGrad WGraduate

WInstructor

WAdmin

WTchAsst

WFaculty

EPerson

EStudent ETeacher

Figure 4. Non-isomorphic imported schemas.
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is added to the list of equality axioms. Note that this is one-way implication, not if-
and-only-if.

Oid-based object systems have an implicit axiom that x=y if they have the same oid.
In general, x=y is true if it can be deduced from the full set of equality axioms.

Equality is independent of type. An instance of ETeacher might be equal to an
instance of WTeacher because of a rule defined on EPerson and WPerson, or even
because of a rule defined on EStudent and WStudent if some teachers were also
students.

Criteria for judging whether things are the same object can be quite complex,
involving various sorts of heuristics, which we will not investigate here. What we
will describe are language facilities for expressing equality once the criteria have
been determined.

Equality of objects can be described in terms of matching values of some property.
The property might be a simple one such as social security number, or a complex
one such as the combination of name, address, and birthday. The property might be
an artificial one expressly provided for this purpose; for example, a course can be
labeled with its equivalent in the ACM/IEEE standard computer science curriculum,
with this property then used for establishing identity.

There can be multiple disjunctive criteria, e.g., persons are the same if they have the
same social security number (Ssn) or if they have the same citizenship and passport
number (Ppn) (not illustrated in Figure 3). Equality criteria often constitute a one-
way implication rather than an if-and-only-if condition. Thus persons should be
considered equal if they have the same Ssn (even if they have different Ppn’s)or if
they have the same citizenship and Ppn (even if they have different Ssn’s).

The general form of an equality specification is thus based on equality of properties,
e.g., f(x)=g(y) ⇒ x=y. It really only makes sense to specify equality based on
“semantically equivalent” properties, e.g., comparing social security numbers with
social security numbers, or passport numbers with passport numbers. If semanti-
cally equivalent properties are given the same name, then equality specifications can
be described as uniqueness constraints on generic functions.

A uniqueness constraint means that f(x)=f(y) ⇒ x=y, i.e., distinct things can’t have
the same value of f. Such constraints are typically specified for single specific func-
tions, e.g., EPerson.Ssn is unique-valued over all instances of EPerson, so that
distinct instances of EPerson cannot have the same value of Ssn.

Declaring generic functions to be unique-valued extends the constraint across all the
types on which the function is defined. Declaring Ssn to be a globally unique generic
function essentially says that things having the same value of Ssn, via any of the
specific functions named Ssn, must be the same object, i.e.,

Ti.Ssn(x)=Tj.Ssn(y)⇒ x=y

for each of the types Ti and Tj on which Ssn is defined.
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4.3.5 Reconciling Discrepancies in Information Content

The essential problem can be described by saying that there are functions which the
end user wishes to use whose values may not be consistent in the various external
sources. Again, we deal only with facilities for expressing solutions, not for discov-
ering them.

Typically, when only one of the external sources provides a value, this can be taken
as the intended result. When there is more than one source, then various strategies
might be appropriate:

• If all the sources provide the same value, use it.

• Apply some aggregating operation, such as sum, average, minimum,
maximum, etc.

• Establish a priority ranking of the sources, returning the value from the most
reliable source.

• If the information is dated, return the most recent value.

• Apply conversion routines to reconcile differences in units, precision, or
other representation characteristics.

• Return all the values from the various sources, perhaps annotated as to the
source of each. This option is only viable if the function is defined to return
results of the appropriate structure.

• Other arbitrary procedure.

It should be obvious that none of these is the natural default for all cases. Computa-
tionally complete object-oriented languages generally have the power to express
such algorithms. What remains to be defined are mechanisms for specifying and
invoking the action to be taken.

If we again assume that semantically equivalent functions have the same name, this
problem bears a remarkable resemblance to overloaded function resolution. The
situations where discrepancies might arise correspond exactly to the cases where an
overloaded function call is ambiguous.

As before, let’s assume we are importing data from several university sources such
as Eastern and Western. A request such as Salary(x) is an invocation of an over-
loaded function, involving specific Salary functions defined on ETeacher,
WTeacher, etc. If x is not an instance of any of these types, we have a type violation.
If x is an instance of exactly one of these types, then the value of the corresponding
specific function should be returned, e.g., ETeacher.Salary(x). Otherwise, if x is an
instance of several of these types, the overloaded function call is ambiguous and
should be treated as an error condition — unless a disambiguating procedure has
been provided. (An ambiguity exists when more than one specific function is rele-
vant, even if they all yield the same value.) It is not at all self-evident what the
disambiguation ought to be. If the sources are providing data about different univer-
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sities, it may be appropriate to return the sum of the salaries (even if they happen to
be equal). If the sources are different databases containing data about the same
university, it might be appropriate to take the average, or to use the source consid-
ered most reliable, or to use the most recent value if the dates are known.

A fairly natural approach here is to allow explicit definition of generic functions,
providing a mechanism for defining the disambiguating algorithm. This also
provides a mechanism for declaring uniqueness of generic functions [Section 4.3.4].
Such a definition might, for example, specify that a user-defined function named
BestSal should be invoked to return an appropriate result whenever Salary(x) is
ambiguous.

4.3.6 Localized Equivalence

Localized equivalence arises when several things from the same source are to be
treated as equal. Most often, these things will be instances of the same imported
type. The situation often arises when there is an independently defined set of
instances to be seen by the end user, and imported things have to be mapped into this
set of instances.

As an example, suppose that courses are to be considered equal if they correspond
to the same course in the standard ACM/IEEE curriculum, and a university offers
several courses having the same ACM equivalent. All those courses should appear
to be the same course to the end user. The same situation might arise if courses were
to be considered equal if they used the same textbook. It might also arise if courses
are to be mapped into the local university’s own set of courses.

Similar localized equivalence might occur in connection with job titles, geographic
entities, colors, and other such things.

Formally, localized equivalence can arise when:

• Equality specifications are based on non-unique properties, such as the ACM
equivalent or textbook of a course.

• There are cycles among equality specifications. Suppose an equality specifi-
cation correlates EPerson and WPerson by social number, and another corre-
lates them by nationality and passport number. Then, if an instance of
ETeacher had the same social security number as one instance of WTeacher
and the same nationality and passport number as a different instance of
WTeacher, transitivity would force those instances of WTeacher to be equal.

Localized equivalence makes it difficult to even formulate the problem of informa-
tion discrepancy. It can no longer be handled directly by the mechanisms of over-
loaded functions.

As an example, let’s say that when courses are considered equal, we want Units of
a course to be presented to the end user as the average of the Units in the external
data sources. Without localized equivalence, a characteristic problem would be that
different specific functions had different values for the same argument, e.g.,
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ECourse.Units(x)≠WCourse.Units(x). We could resolve that with a disambiguator
for the overloaded Units function, which would take the average of the values when
Units(x) was invoked. The unreconciled values could be seen by the end user by
invoking the specific functions ECourse.Units(x) or WCourse.Units(x).

With localized equivalence, we somehow need to have x and y be instances of the
same type (say ECourse) with different values of ECourse.Units, and yet also have
x=y. This simply doesn’t work. Under the substitutability principle [Section 4.3.4],
it is not possible for ECourse.Units(x) to be different from ECourse.Units(y) if x=y,
since they are logically one and the same object.

This problem requires the introduction of two distinct “viewpoints” (or “spheres”
[9]). In an underlying sphere, x and y appear to be distinct objects, allowing the
possibility of ECourse.Units(x)≠ECourse.Units(y). This sphere should only be
visible to an administrator responsible for defining the reconciliation mechanisms.
The end user should only see anintegrated sphere in which x=y and there is only
one reconciled value of ECourse.Units(x).

An equality specification e(x,y) now implies that x=y in the integrated sphere, but
not necessarily in the underlying sphere. Under these conditions, a type may have
fewer instances in the integrated sphere than in the underlying sphere, since x and y
count as one object in the former but two in the latter. Logically speaking, an
instance in the integrated sphere corresponds to an equivalence class of instances in
the underlying sphere.

Disambiguators for overloaded functions dealt with the values of several specific
functions for a given argument. Here we need the complementary notion, having to
unify the values of a given specific function for several arguments. That is, we have
to unify the values of ECourse.Units(x) and ECourse.Units(y).

The solution is similar to the one for disambiguation of overloaded functions,
though now it has to span between the integrated and underlying spheres. A
“unifier” function could be defined for ECourse.Units, such that an invocation of
ECourse.Units(x) in the integrated sphere would apply this unifier to the set of
values of ECourse.Units(xi), where the xi are the distinct objects in the underlying
sphere which are equivalent to x.

5  Object Orientation is Part of the Problem
Object orientation is plagued by a diversity of interpretations. There is a variety of
object oriented models. Readers will probably have noticed different models
assumed in different lectures at this Institute. Various experts have very clear and
self-consistent ideas, but they are not consistent with each other. Hence there is a
new problem of interoperability of object oriented facilities.
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5.1 Common Concepts

There seems to be a fairly common core of concepts shared by most OO models [6,
13, 14], but even these are likely to stir some discussion among experts:

• Identity.

• Behavior (messages/methods/operations).

• State.

• Types/interfaces.

• Subtyping.

• Inheritance.

• Overloaded/polymorphic operations.

• Encapsulation.

5.2 Performer and Participant Models

Perhaps the most fundamental distinction between object models is whether objects
are perceived as performers or participants. Suppose that a student counseling
service (human or automated) wishes to register Sam in the Algebra course. The
user might perceive this as a request for a Register operation in which Sam and
Algebra participate, perhaps written as Register(Sam,Algebra). The requested
service might beperformed by an object corresponding to Sam, by an object corre-
sponding to Algebra, by a Registrar application object, or directly by a DBMS
object which records Sam’s registration in Algebra. The requester might not even
know that the Registrar or DBMS objects exist.

The “participants” in the user’s request are Sam and Algebra. The “performer”
might be Sam, Algebra, the Registrar, or the DBMS. Thus, in general, the performer
may or may not be one of the participants mentioned in the request. Sometimes the
application programming language imposes a “performer-oriented” syntax, e.g.,
Sam.Register(Algebra) or Algebra.Register(Sam), but even then the actual
performer might be something else, i.e., the Registrar or the DBMS rather than Sam
or Algebra. Similarly, a user at a graphical interface might drag a document icon to
a trashcan icon (the two participants), causing the service to be performed by a file
manager object.

Some facility in the system may have to transform a user’s request of the form
Register(Sam,Algebra) into a performer request such as Registrar.Register(Sam,Al-
gebra) or DBMS.Register(Sam,Algebra). This may even cascade to another level,
which recognizes different copies of the Registrar application at different sites as
being distinct objects, and selects one copy to service the request. There are thus at
least two object models involved in the registration scenario, requiring a cascading
of interfaces [13, 14] to map between them.

A participant model does not distinguish between performers and participants, while
a performer model does. The distinction is relative to a particular request; a
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performer for one request might simply be a participant in another. In a typical
performer model, only certain objects can play the role of performer, and most
model facilities are oriented toward those objects.

There are a number of other distinctions which roughly parallel the performer/
participant distinction:

Performer Models Participant Models

Request

Message to one target object (the
performer).

This is the “classical” object model.

Operation applied to one or more
participant objects.

This is the “generalized” model.

Request Syntax

Performer.Operation(Participants) Operation(Participants)

Objects Represent

System components & resources
(applications, clients/servers, chunks
of code, chunks of storage, files,
tables, tuples, data “frames”).

Enterprise entities.

Object Granularity

Coarse, large. Fine, small.

Role of Infrastructure

Locate performer, deliver request,
manage parameters.

Determine performer, then locate it,
etc.

Method Ownership

Exclusively owned by performer
type.

Jointly owned by participant types
[10].

State

Disjointly partitioned between
objects.

Could be shared among objects.

Relationships

Separate constructs. Could be multi-operand operations.

Localization

Object is at one node, state is a
contiguous “chunk”.

Object can be dispersed, with state
and services scattered (not just
replicas).
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This is not a strict partitioning. Various object models exhibit these characteristics
in various degrees and combinations.

Note that both performers and participants can have associated behavior.

The role of OODBMS is ambivalent. Some have performer models, some have
participant models.

5.3 Other Significant Differences

The following is a sampling of some other significant differences:

• Which of the following are objects?

Literals, aggregates, tables, applications, users, icons, types, classes, opera-
tions, methods, attributes, relationship, factories,…

• Object introduction:

– Objects are created, made instances of types, and acquire corresponding
interfaces by explicit operations of the object system, or

– Independently existing objects are accessed by the object system, which
has to discover their types and interfaces.

• Identity:

– Based on oid’s? Format? Scope of uniqueness?

– Can oid’s be held outside the object system, with guaranteed meaning on
future use?

– Can objects have several (synonymous) oid’s?

– Is x=y testable?

– How do oid’s relate to naming systems?

• Data structure:

– Expose more complex data structure, or

– Hide structure behind behavioral abstraction.

• Behavior: is there a distinction between behavior specification and imple-
mentation? Which corresponds to methods?

• Types:

– One level vs. subtyping.

– Single vs. multiple (immediate).

– Changeable?

– Are extents maintained?

– Various definitions of the difference between types and classes.

– Basic data types.



20

• Various inheritance notions (single/multiple, class/type, blocking, instance
vs. property, delegation,…)

• Treatment of attributes and relationships.

• Various approaches to containment, aggregates, composite objects.

• Query (yes/no, different query models; is it really an OO issue?).

• Single performer per object?

– All services for a given object are provided by one performer (e.g., a
document is associated with one word processor for all services). All
requests involving this object can be routed to the same performer.

– Services may be provided by different performers (e.g., independent
performers for editing, displaying, and printing a document, possibly at
different locations). Choice of performer may depend on service
requested.

5.4 Why the Differences?

Object models differ for a variety of reasons. Perhaps the most important is that
different goals are being pursued by various object-oriented facilities:

• Interoperability.

• Portability.

• Extensibility.

• Code reuse.

• Communication/distribution.

• Complex applications.

• Persistence of program data.

• Enterprise modeling.

• System resource management.

There are also business, political, and cultural reasons. Vendors have vested inter-
ests in their products. Users need to protect their investments in legacy applications,
hardware, software, and programmer training. Researchers become committed to a
certain line of development. People have learned to think in the metaphors of certain
languages (C++, Smalltalk, CLOS, SQL, etc.). Nationalism plays a role. People
have different views of the role of database, e.g., as a repository of structured data
vs. an interface through which users manage information.

5.5 Solution Approaches

There is even diversity in the solutions to the problem, and also in the organizations
trying to solve the problem [11].
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One style of reconciliation is to develop aunified super-model, in which each model
can be found as a subset or restriction of the general model. The other approach is
an interoperabilityframework in which distinct models can cooperate.

Diverse agencies are addressing the problems of object technology. There are
companies and consortia in the private sector, as well as government standards
bodies, both in the United States and internationally. Some are concerned with the
object paradigm in specific technologies, such as programming languages or data-
bases, while others seek a uniform approach to object technology as a whole. Two
of the organizations addressing these issues are:

• The Object Management Group (OMG), an industrial consortium trying to
reach rapid consensus on shared conventions to promote interoperability of
applications using currently available technology.

• X3H7 (Object Information Management), an ANSI technical committee
intended to foster harmony in the object-oriented aspects of various informa-
tion processing standards.

The key steps in such reconciliation will include:

• Recognizing the diversity of fundamental assumptions regarding the nature
of objects.

• Identifying and characterizing different models.

• Developing a coherent strategy to reconcile diverse models:

– Describe the models and their differences in common terminology.

– Converge to a common model as much as possible.

– Develop interoperability strategies for reconciling the unavoidable
differences.

6  Conclusions
Object orientation plays a major role in the interoperation of computational systems.
Its basic messaging model, and the associated architecture and infrastructure, enable
applications to communicate across hardware and software boundaries and to coor-
dinate the execution of their work. Rich semantic features such as identity, general-
ization and specialization, encapsulation, polymorphism, and computational
completeness facilitate the sharing of common information among the applications.

At the same time, the diversity of object-oriented models is raising interoperability
problems of its own.
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