
1

Measurement Data
(Archive Report)

William Kent1

Stephanie Leichner Janowski2 Bruce Hamilton1

Dan Hepner3

April 19, 1996 2:18 pm
mdarchiv.fmk

Abstract

Dimensional analysis does not adequately model the semantics of measurement data. Distinct
concepts such as work and torque are treated as equivalent, while sensibly related concepts such as
quantities expressed by weight or volume (tons and bushels of wheat) are rendered incompatible.
Dimensional analysis provides no adequate treatment of dimensionless quantities, nor does it differ-
entiate between such concepts as circular angles and rotational angles, or temperature points and
temperature intervals.

This is an archival status report on an investigation into these and related matters which has been
suspended after three years of intermittent effort.

Preface

The investigation captured in this archival snapshot was conducted sporadically from 1993 to 1995. It
was sparked by HP’s Computer Systems Division’s intent to provide a model of dimensioned data in
the OpenODB object-oriented database system, aimed at the needs of POSC (Petroleum Open Systems
Consortium). Formal support waned,but several of us remained tantalized by the complexities and
anomalies that lay just beneath the surface of such a nominally simple notion as dimensioned data.
We met informally for a couple of years, progressing as best we could between the cracks of our “real”
jobs, but it eventually became too difficult to sustain any real progress. After one last spurt as an HP
Labs Grass-roots Basic Research Project in the summer of 1995, the effort just petered out.

These are the remains, a snapshot of our workbook frozen in mid-flight, with all the lumps and warts
of unfinished work in progress. It’s disorganized. This document was intended to be a repository from
which various “real” documents can be extracted. It provided a framework in which all our stuff could
appear, in some logical sequence. It contains material at all stages of completion, and at various levels
of presentation for various audiences, from popularly tutorial to academically axiomatic.

1. Hewlett-Packard Laboratories
2. Hewlett-Packard Test and Measurement Support Division
3. Hewlett-Packard Computer Systems Organization

2

3

I PROLOGUE ..10

1 Introduction ...10
1.1 What’s the Problem? (1) ...10
1.2 What’s the Problem? (2) ...10
1.3 What’s the Problem? (3) ...13
1.4 What’s the Problem? (4) ...14
1.5 What is Measurement? (1) ...15
1.6 What is Measurement? (2) ...16
1.7 Goals of Measurement Systems...18

1.7.1 Symbolic Representations..18
1.7.2 Operations ..18

1.8 This Paper ...19
1.8.1 Goals..19
1.8.2 Scope ...19
1.8.3 Approach ...20
1.8.4 Our Contribution to Dimensional Support ...20
1.8.5 Prior Work ..21

2 The Skeletons in the Closet ..21
>>ToDo 1: Check that all sample problems are covered in text. 21

2.1 Domain Semantics..21
2.2 Units and Conversion...26
2.3 Computational System Support...26

3 Basic Concepts...26
3.1 The Central Issue: Operational Consequences ...26
3.2 Quantities Are Distinct From Their Expressions ...27
3.3 Some Terminology ..27

>>ToDo 2: Are any scalar dimensions represented with complex numbers? 28
3.4 Introduction to Units..28
3.5 Dimensions as Types ..29

>>ToDo 3: Sort out name conflict: Dimension as operation and as type. 30
3.6 Precision and Accuracy...31
3.7 Context ..32

>>ToDo 4: Is there any further discussion of context anywhere? 32

II INTER-DIMENSION RELATIONSHIPS...33
>>ToDo 5: Need to complete all aspects of type relationships and graphs. 33

4 Independent (Orthogonal?) Dimensions: Dimensional Analysis33

5 Subtypes ..34
5.1 Unsigned and Signed Domains..34

>>ToDo 6: Complete the stuff on subtypes, unsigned/signed domains. 34
5.2 Others? ..35

>>ToDo 7: Are there other examples of subtypes? 35

6 Point and Interval Types...35
>>ToDo 8: Refine the definition of interval domain. 35
>>ToDo 9: Generalize the units concept to include origin? 35
>>ToDo 10: Do point dimensions have units? Are they really measurements? 36
>>ToDo 11: Clarify the nature of the relationship between point and interval dimensions. 36

6.1 (Old Material) ...36

4

>>ToDo 12: Check relevance of this other old material. 36
6.2 Temperature; Zero-Origin Units..38

>>ToDo 13: Does this treatment of temperature make sense? Consistent with our other treatments? 38

7 Siblings ..38
7.1 The Family of Angles..38

>>ToDo 14: What does the sibling relationship really mean? 38
>>ToDo 15: Sort out the structure of the family of angle dimensions. 38

7.1.1 Rotational Angles ...39
7.1.2 Modulo Domains: Circular Angles...39
7.1.3 Interior Angles..41

>>ToDo 16: Complete the investigation of interior angles. 41
7.1.4 Compass Headings ...41

>>ToDo 17: Complete the investigation of compass headings. 41
7.1.5 Summary of Angles ..41

7.2 Other Examples ..42
>>ToDo 18: Are there other examples of sibling dimensions? 42

8 Specialization...42
>>ToDo 19: Do we have consensus on this treatment of specialization? 42

8.1 Purpose..42
>>ToDo 20: Is torque a vector? 42

8.2 The Specialization Relationship ..43
8.3 Compatibility Levels...44

8.3.1 Strictest Enforcement ..44
8.3.2 Weakest Enforcement: Aliasing ..45
8.3.3 Parent/Child Assignment...45
8.3.4 Multiplicative Promotion ...45
8.3.5 Additive Promotion ..45
8.3.6 Combinations..46

>>ToDo 21: Discuss the possibility and consequences of changing an alias to a specialization. 46
8.4 Multiple Parentage...47
8.5 Multi-Level Specializations..47

>>ToDo 22: Examples of multi-parent specialization? 47
8.6 The Unary Dimension and its Specializations..47

8.6.1 Purpose ...47
8.6.2 Implicit Specializations..47
8.6.3 Explicit Specialization..48

>>ToDo 23: Notes. To be completed... 48
8.6.4 Signatures...48
8.6.5 Units..48

>>ToDo 24: PQE’s for dimensionless and composite dimensions? 49
>>ToDo 25: Is percent a unit? 49

8.7 Specialized Canonical Form...49
>>ToDo 26: Should we mention alternate encoding of signature? 49

8.8 Other Experiments With Specialization ...49
8.8.1 Another Approach to Work and Torque ..49

9 Generalization (Quasi-Dimensions)..51
>>ToDo 27: Possible application to currency conversion? 51

9.1 General Approach ...52
>>ToDo 28: To be completed. These are just notes. 52

9.2 Compatibility ..52
>>ToDo 29: Compatibility question. 53

5

>>ToDo 30: What about compatibility of multiplicative combinations? 53
9.3 Converting Among Canonical Forms...53

10 Summary of Inter-Dimension Relations..53
>>ToDo 31: To be completed. Are there others? 53

III MEASUREMENT PARADIGMS..54
>>ToDo 32: To be completed. 54

11 The Units-Based Paradigm ...54
11.1 Fundamental Properties ..54

11.1.1 We Know What It Is ...54
11.1.2 We Can Tell Them Apart ...54
11.1.3 There Is Total Order ..55
11.1.4 There Is Combinational Closure..55

>>ToDo 33: Counterexamples? 56
11.1.5 Monotonic Combination ...56
11.1.6 There Is A Natural Nil ...56

>>ToDo 34: Is uniqueness of nil an independent axiom? 56
11.1.7 There Are Differences ..56
11.1.8 Subtraction: There May Or May Not Be Negatives ...56

>>ToDo 35: Does any of that need to be proved? 56
11.1.9 Multiplication and L-Rational Lengths...56
11.1.10Continuity and L-Reachable Lengths ...57

>>ToDo 36: Further proof needed? 57
11.1.11Coverage ...57
11.1.12Degenerate Units ...58

>>ToDo 37: To be investigated. 58
11.2 Variants Within the Units-Based Paradigm...58

>>ToDo 38: To be completed. 58

12 Vector Dimensions..58
>>ToDo 39: More to be said? 58
>>ToDo 40: Stephanie’s questions: 59

13 Aggregates ..60
>>ToDo 41: More to be said? 60

14 Enumerations...61
>>ToDo 42: Does enumeration correspond to a different measurement paradigm? 61

15 Non-Units-Based Measurement ...61
>>ToDo 43: To be completed. 61

15.1 Counts ...61
>>ToDo 44: Open questions about counts and frequency: 62

16 Generalized Type Graph ...62
>>ToDo 45: To be completed. 62
>>ToDo 46: Stephanie’s questions: 63

IV UNITS AND CONVERSION...67

17 Units Stuff ...67
>>ToDo 47: This all needs review and reorganization. 67

17.1 Units ..67

6

17.1.1 Straightforward Units..67
>>ToDo 48: Where do we talk about several dimensions having the same units? 67

17.1.2 More Complex Units...67
>>ToDo 49: Does a dimension have to be totally ordered? 68
>>ToDo 50: Units questions: 68

17.1.3 Unit Names...68

V COMPUTATIONAL SYSTEM SUPPORT..70
>>ToDo 51: Total review needed. 70

18 Introduction ...70
>>ToDo 52: To be completed. 70

18.1 Types of System Appropriate for Delivering Support...70

19 Syntactic Matters ..70
19.1 Physical Quantity Expressions (PQEs) ...70

>>ToDo 53: SPQE’s in the type graph? 72
19.2 Additive PQEs...72

>>ToDo 54: More needed? 73
19.3 PQEs With Non-numeric Units ...73
19.4 Vector Physical Quantity Expressions ..73
19.5 Units Recognition ...74

>>ToDo 55: To be completed. 74
19.5.1 Derived Unit Names...74

>>ToDo 56: To be completed. Are we agreed on this stuff? 74
19.5.2 Prefixes ...74

19.6 Coordinate Systems..74
>>ToDo 57: Why is this here? 74

20 Basic Computational Support..75
20.1 Declaring Dimensioned Data ...75

>>ToDo 58: Declaring variables with and without units. 75
>>ToDo 59: More implementation considerations. 76

20.2 Operating with Dimensioned Data..76
20.2.1 Compatibility ..76

>>ToDo 60: Need more work on matrixes. 77
20.2.2 Mapping Between Physical Quantities and Physical Quantity Expressions78

>>ToDo 61: Needs work. 78
>>ToDo 62: Numeric representations. 79
>>ToDo 63: A type checking question. 80

20.2.3 Unit Conversions..80
20.3 Input/Output...81

20.3.1 Input of Physical Quantity Expressions (PQEs)...81
>>ToDo 64: Dan, can you suggest a better example? 81

20.3.2 Output of Physical Quantity Expressions (PQEs)..81

21 Extensibility ...82
21.1 User-Defined Dimensions ..82
21.2 User-Defined Units...82

22 Default Units and Data Types ..83
22.1 Units ..83

>>ToDo 65: A question. 84
22.2 Numeric Format ...84
22.3 Numeric Type..84

7

23 Specialized Dimensions...84
23.1 Defining Specialized Dimensions...84

>>ToDo 66: Questions about units. 85
23.2 Declaring Specialized Dimensions...85

>>ToDo 67: To be completed. 85
23.3 Operating With Specialized Dimensions...85

>>ToDo 68: To be completed. 85
23.4 Input/Output...85

>>ToDo 69: What is the type of “3 feet”? 85

24 Quasi-Dimensions ...86
24.1 Defining Quasi-Dimensions ...86
24.2 Declaring Quasi-Dimensions ...86

>>ToDo 70: To be completed. 86
24.3 Substance-Dependent Conversion Factors..87

>>ToDo 71: Re-check continuity, relevance. 87
24.4 Operating With Quasi-Dimensions ...87
24.5 Input/Output...87

25 Point Dimensions ..87
>>ToDo 72: To be completed. 87

25.1 Defining Point Dimensions ..87
25.2 Declaring Point Dimensions...87
25.3 Operating With Point Dimensions...87
25.4 Input/Output...87

26 Vector Dimensions..87
>>ToDo 73: To be completed. 87

26.1 Defining Vector Dimensions ..87
26.2 Declaring Vector-Dimensioned Data ...87
26.3 Operating With Vector Dimensions...87

26.3.1 Compatibility ..87
26.3.2 Coordinate Transformation ...88
26.3.3 Comparison and Assignment...88
26.3.4 Arithmetic ...88

>>ToDo 74: Questions about vector arithmetic. 88
26.4 Input/Output...88

27 Aggregate Dimensions ...88
>>ToDo 75: To be completed. 88

27.1 Defining Aggregate Dimensions ..88
27.2 Declaring Aggregate Dimensions ..88
27.3 Operating With Aggregate Dimensions ..88
27.4 Input/Output...88

28 Accuracy, Precision and Context ..88
>>ToDo 76: To be completed. 88

29 (Miscellany) ..88
>>ToDo 77: Where should the stuff in this section go? 88

29.1 Use of Systems..89
29.2 Language Issues ...89

29.2.1 Recommended Functions and Features ..89
29.3 Representation Issues ..89

8

29.3.1 Unit Conversion..89
Pairwise Conversion...89
Conversion Within a Family..90

29.3.2 Precision and Context ..91
29.3.3 Things to Represent ...91

Physical quantities ...91
Dimensions ...91
Units...91

Conversions...91
Coordinate systems ..91
Numbers ...92
Precision, Accuracy ..92

29.3.4 Levels of representation...92
Input...92

Output...92
Storage ..92

29.3.5 Additive Physical Quantity Expressions (APQEs) ...92
29.3.6 Other Representation Issues ...93
29.3.7 Specialized and Quasi-Dimensions ...94
29.3.8 Expressions...94

29.4 Performance Issues...95

30 Conclusion ..95
>>ToDo 78: To be completed. 95

31 Acknowledgments ...95

32 References...95

VI OTHER POTENTIALLY USEFUL MATERIAL ...97

33 Peculiar Measurement Domains ...97
33.1 Angles ..97
33.2 Temperature ...97
33.3 Weight and Mass ..97

>>ToDo 79: Describe their relationship. 97
>>ToDo 80: A specialization graph question... 97

33.4 Time and Date ..98
33.4.1 The Essence of Time (June 1993) ..98

Introduction ..98
The Time Line ..98
Notes...99

33.4.2 About Time (August 1992) ...100
Introduction ..100
What Time Is ..100
Measurements on a Time Line ..101
Computation Problems...103
Representation Problems...104
Modelling Time...106
Idiosyncrasies ...109
Conclusions...110
References...110

9

34 Miscellany ...110
34.1 Types of Physical Quantities..110
34.2 The Reference Rocks...112
34.3 Combinational Closure...112
34.4 Division and Rational Closure ...113
34.5 Information About Physical Quantities: Measurements...113
34.6 Information About Measurements: Measurement Data ...113
34.7 Measurement Fundamentals ...114
34.8 General Functionality ..115

34.8.1 Physical Quantities ..115
Count...115
Discontiguous Mappings..115

34.9 Future Work..115
34.9.1 Semantics..115
34.9.2 Machinery ...116

34.10 Domains ..116
34.11 Conversion of Non-Numeric Units...117
34.12 Absolute Significance of Relative Magnitude..117
34.13 SI Conformance...118
34.14 Administration of Systems...118

34.14.1Operations ..119
34.14.2Operands...119

35 My Height: A Model For Numeric Information..119
35.1 Introduction ..119
35.2 The Problem...119
35.3 A Three-Stage Process...120
35.4 Measurements And Data Types..121
35.5 Three Levels Of Abstraction ..122
35.6 Conceptual And Concrete Specifications...123
35.7 Conceptual Specifications ..124
35.8 Concrete Specifications ...126
35.9 Real Computations ...127
35.10 Blurring The Distinction With Precision ...128
35.11 Blurring The Distinction With A Need To Know...128
35.12 Curried Equivalences: Alternative Models ..128
35.13 Conclusions ..130
35.14 References ..130

36 The Grass-roots Basic Research Program Project..131
36.1 The Proposal ...131
36.2 The Final Presentation...133

10

I PROLOGUE

1 Introduction

1.1 What’s the Problem? (1)

• Computational systems don’t provide enough support for measurement data. This is partly due
to known problems in such areas as units conversion, accuracy and precision.

• Another reason, however, is an inadequate understanding of the fundamental nature of
measurement, and the limitations of current theory, particularly in the area of dimensional
analysis.

• “Measurement” covers a broad range of notions, some involving a units-based paradigm, some
not.

• Dimensional analysis is insufficient for the general requirements of units-based measurement.
There is a need for some new sorts of dimensions, and new sorts of relationships among dimen-
sions, in order to meet the needs of more measurement applications. Much of this document
addresses this need.

• As a prerequisite, such theory must rest on a sound foundation of concepts which clearly differ-
entiate between physical quantities, units, and representations.

• Useful computational support for measurement data would include the ability to define new
dimensions and units to the system. In order to understand exactly what domains are support-
able by a unit-based computational facility, it’s useful to have an axiomatic characterization of
the behavior of units-based measurement.

• Beyond units-based measurement, it’s useful to explore other measurement paradigms which
might also be supported in computational systems.

• Finally, we examine the requirements for providing effective support for measurement data in
computational systems.

1.2 What’s the Problem? (2)

Travel planning involves arithmetic. How long will it take to drive from Tacoma to Tijuana? Let’s see.
We’ll need about three days to drive from Tacoma to Los Angeles, then two more hours to San Diego,
and Tijuana is maybe another fifty miles. Feed that data into a computer and you might get
3+2+50=55. Is that what you want? Not likely. The arithmetic is correct according to the computer’s
rules, but that’s not what we need. We’d like to express the problem as “3 days + 2 hours + 50 miles”.
The clever computer shouldn’t start by adding 3+2, but rather something a little smarter to get either
3.083 days or 74 hours. And then the computer should refuse to add that to 50 miles, knowing that you
can’t add a time to a distance.

Checking the legitimacy of an expression could be complicated. There are lots of dimensions: Length,
Area, Volume, Time, Speed, Acceleration, Mass, Density, Force, Work, etc., etc., etc. It could take a
book of rules to define what sorts of dimensional expressions can be added, subtracted, multiplied,
divided, assigned, and compared. It’s a little simpler if we ignore units. Whatever you can do with
pounds can also be done with ounces, tons, grams, and kilograms, given the appropriate conversion
factor. For checking legitimacy, it only matters that a weight is involved. Further simplification is then
provided by dimensional analysis.

Classical dimensional analysism is elegantly simple. All dimensions can be expressed as multiplicative
combinations of a few basic dimensions. Area is Length2, Volume is Length3, Speed is Length/Time,

11

and Acceleration is Length/Time2. Force is Mass times Acceleration, that is, Mass*Length/Time2, and
work is Force times Length (though many of us memorized the phrase “Force times Distance”), which
is Mass*Length2/Time2.

The theory of dimensional analysis in twenty-five words or less: dimensions can be algebraically
substituted, multiplied, and cancelled. Dimensionally equivalent terms can be combined, compared,
and converted. Combination and comparison require common units.

Can you add a speed in miles per hour to a speed in feet per second? Yes, because they are the same
sort of thing: dimensions of the form Length/Time. You just have to convert to common units first.
There might be some quarrel as to which units to use, but the point is that it can be done and it makes
sense. You can also compare a speed in miles per hour to a speed in feet per second, once you’ve
converted to common units. And if you need something expressed in miles per hour though it’s been
computed in feet per second, is there a legitimate units conversion available? Yes, because they are
dimensionally equivalent.

Can you add a speed to an acceleration? No, because one is Length/Time and the other is Length/Time2.
No amount of units conversion can make that a legitimate addition. No amount of units conversion can
make sense out of comparing the two. There is no legitimate units conversion from one to the other.

If you divide an area by a length, and divide that by a time value, can you add the resulting term to
the result of multiplying an acceleration by a time value? Yes, because each term works out to be
Length/Time, hence both are speeds, and you can always add the same sorts of things so long as you’re
careful to regularize the units.

You can learn this elegant theory of dimensional analysis in about a minute, and it solves a lot of prob-
lems. Very useful type systems based on dimensional analysis could be designed for programming
languages to support dimensioned data. [Maybe say a few words about potential difficulties with
regard to units naming, recognition, and defaults; conversion algorithms; accuracy and precision;
syntax for expressions and declarations; and whatever else might be relevant at that level.]

But this simplicity comes with the usual sort of price. As good old Albert said, things should be as
simple as possible, but not more. [Verify the source, and the wording.]

Fuel consumption in gallons per mile is a volume divided by a length, yielding Length2, which is Area.
Is fuel consumption really the same sort of thing as area? Is adding a fuel consumption to an area any
more sensible than adding an area to a volume?

The coverage of paint, if measured in gallons per square foot (Volume/Area), would be dimensionally
equivalent to Length. Does that make sense? And is the productivity of a lumber mill or licorice factory,
measured in feet per day, really the same concept as speed, even though both are Length/Time?

With a little bit of high school physics you would know that torque is a force multiplied by a length —
and you would also know that torque is not the same thing as work, also force times length.

So we have a host of dimensions which are “dimensionally equivalent” without really being semanti-
cally equivalent. They aren’t compatible with each other, even though dimensional analysis says they
are.

The opposite problem exists, too. There are dimensions which are semantically equivalent, and should
be compatible, even though they aren’t dimensionally equivalent. If I have a cup of salt and you have
a pound of salt, does it make sense to ask who has more salt? Of course it does; you and I can make
that comparison. Does it make sense to ask how much salt we would have if we added mine to yours?
Of course. But dimensional analysis wouldn’t allow us to compare or add a volume and a mass, even
though both are notions of “amount”.

12

If we each dissolved our salt in a quart of water, could we figure out which solution is more concen-
trated? Of course, even though mine is initially expressed as Volume/Volume and yours as Mass/
Volume. Again, though these are both “concentrations”, dimensional analysis doesn’t recognize their
commonality.

If we each paid a dollar for our salt, we could figure out whose was more expensive. There’s a common
concept of “unit cost”, though they aren’t dimensionally equivalent.

Of course, there’s a catch here. The relationship between a cup and a quart, or between a gram and a
pound, is the same no matter what kind of stuff we’re talking about. But in order to compare my cup
with your pound we have to know whether we’re talking about salt, sand, water, mercury, or something
else. The correspondence between a volume and a mass depends on the density of the stuff involved.
But once we’ve determined that, once we’ve established a context in which the density of stuff is
constant, we can treat “amount” as a dimension which can be expressed as mass or volume inter-
changeably in much the same way as units of volume are interchangeable. This has important appli-
cations in many industrial settings, and even in the medical context, where medication dosages are
routinely converted between different dimensional forms. In general, some incompatible dimensions
can be made compatible by fixing certain conversion parameters for a particular context.

Dimensional analysis does strange things with “dimensionless” quantities. If I dissolve my cup of salt
in a quart of water, I might report the concentration in terms of Volume/Volume. If you dissolve your
pound of salt in ten pounds of water, you might express the concentration in terms of Mass/Mass. In
each case the dimensions cancel out, leaving us with dimensionless quantities, which are considered
to be dimensionally equivalent. But the slope of a ramp, which is Length/Length (e.g., inches/foot), and
the accuracy of a clock, which is Time/Time (e.g., seconds/day) are also dimensionless, and dimensional
analysis treats these all as being compatible with each other. Our two salt-water concentrations, the
slope, and the clock accuracy can all be freely compared and added to each other. Furthermore, angle
is often equated with Length/Length, making it yet another dimensionless quantity compatible with
all of these.

Can such problems be solved? Yes. At what price? Complexity. Traditional dimensional analysis has
exactly one sort of relationship among dimensions: any dimension can be uniquely expressed as a
multiplicative combination of basic dimensions. Two new sorts of relationships address many of these
other problems: a dimension can be either a “specialization” or a “generalization” of another. What we
mean by those terms will be explained at great length later on.

Other problems suggest other new sorts of relationships among dimensions...

“And now, the world-wide weather report. The temperature in Stockholm reached 40° C today. New
York City was just as hot, reporting 104° F. Stockholm’s temperature has jumped by 40° C in just one
day, which also matches the one-day jump of 72° F suffered by New Yorkers.”

You think that weather’s amazing? How about those amazing comparisons. 40° C is the same as 104°
F, and 40° C is also the same as 72° F. What’s going on? Aren’t we talking about the same sort of phys-
ical quantity? Apparently not. In one case we’re reporting temperature points: how hot is it? The
“hotness” measured as 40° C is the same as the hotness measured as 104° F. The other case deals with
temperature intervals: how much has it changed? The change measured as 40° C is the same as the
change measured as 72° F. Thus temperature is not one but two dimensional domains, related to each
other as a “point-interval” pair. This is another new sort of relationship among dimensions that we’ll
describe later.

Other ambivalent behaviors can also be resolved by distinguishing between similar domains. Is an
angle of 400° the same as an angle of 40°? Yes, if the domain is circular angles, but not if the domain
is rotational angles. Are there such things as negative weights? Not if you’re talking about the weights

13

of things, but yes in the case of buoyancies. Lengths similarly occur in two domains which do and don’t
admit negative values.

These treatments of dimensioned data will be realized in the type systems of programming languages.
Robust systems will not only provide support for a particular set of dimensions, but will allow new
dimensions to be defined as well. What determines whether something can be legitimately defined as
a dimension to be managed by such computational facilities? Could things like color, intelligence, effi-
ciency, productivity, reliability, ... be handled? Why or why not? This leads to an exploration of the
formal foundations of units-based dimensioned data.

Before elaborating these new ideas about dimensioned data, we need to be clear enough on the basic
concepts. Is “10 pounds” a weight or a price? Is it the same thing as “10 lbs”? As “160 ounces”? To sort
these out, we distinguish between physical quantities, units, and representations, as explained later.
Briefly, a physical quantity such as a certain weight is a distinct abstract thing, quite apart from the
various expressions of the form “10 pounds” or “160 ounces” which might be used to express it. This
physical quantity is much like the idea of a person being a single thing, distinct from the various
names, employee numbers, social security numbers, and other constructs used to represent him. Then
we recognize units, used for measurements of certain kinds of physical quantities, as being abstrac-
tions apart from their names. For example, there are two distinct units, one measuring weight and the
other measuring money, even though both are called “pounds”. Conversely, one of these units might
have several names such as “pounds” and “lbs”. Finally, representation has to do with the formats of
text strings expressing some sorts of numbers and unit names.

1.3 What’s the Problem? (3)

Dimensioned data occurs in computing systems almost everywhere, but is poorly supported.
Computing systems routinely:

• Convert among compatible representations such as integer and floating point:

– 6+3.1

– 6 eq 3.1?

– (float) x← (int) 6.

• Report errors when asked to convert among incompatible representations:

– 6+”ABC”

– 6 eq “ABC”?

– (short) x ← 10000000000.

• Perform scale conversion transparently and efficiently when needed. In the usual floating point
representation, the sum 10 000.1 + 0.07 is computed by first scaling one of the numbers until the
two exponents are equal, then performing the addition (and possibly normalizing the result).
The equivalent operation on dimensioned data is the same, with “exponent” replaced by “unit.”

• Allow users to define new types, and make specializations and collections of existing types.

But the same systems which have built-in support for expressions like 10 000.1 + 0.07 offer no support
for expressions like 2 miles ÷ 15 minutes. If such support were available, it would offer the same bene-
fits as the support for number types: make data more self-explanatory, save time, eliminate error-
prone tasks, catch errors in the remaining tasks, and improve interchange of data across systems and
between systems and people. In a database engine, such support would save bandwidth and ease the
load on client systems.

14

1.4 What’s the Problem? (4)

Dimensioned data is important in many computer applications, and will become even more important
in emerging application domains such as health care and the environment. The most familiar compu-
tational aspects involve units conversion and dimensional analysis. Behind these deceptively simple
aspects lies a remarkably confusing set of issues concerning the appropriateness and meaning of
various operations. Sorting out these issues is essential to the design of appropriate facilities in
programming languages and information modeling.

Even the scope and boundaries of the topic are unclear. Measurement generally involves assignment
of a symbolic representation to a physical quantity in a way that communicates certain information
and supports certain operations. “Physical quantity” is a very loose term, covering obviously physical
things like length and weight as well as not so physical things like intelligence, efficiency, and beauty.
Sometimes we’ll refer to these more vaguely as “phenomena”.

Several aspects of dimensioned data need to be distinguished:

• The abstract phenomenon being characterized.

• The corresponding symbolic representations.

• The abstract paradigm for assigning a representation to the phenomenon, e.g., judging, testing,
polling, measuring, etc.

• The real process for assigning a representation, involving such aspects as accuracy, precision,
and repeatability, as well as such auxiliary mechanisms such as averaging of multiple readings.

The symbolic representation is often numeric, but letter grades in school and letter compass headings
such as NNE may also be considered to be dimensioned data.

The representation may simply convey a relative order, such as first, second, and third place, or gold,
silver, and bronze medals. Very often the information has the sense of how big or how much, but not
always. Some phenomena don’t involve a sense of order or bigness at all, such as locations or directions.

There are various paradigms for assigning symbolic representations to phenomena, which may or may
not all be considered “measurement”. At one extreme are purely subjective judgments, as in grading
essays, or in judging Olympic events, beauty contests, and livestock competitions at the county fair. A
bit less subjective are polling and testing procedures which simply count things, like people’s prefer-
ences or the number of correct answers on a test. Some paradigms are based on more complicated
computations, as in batting averages and quarterback ratings.

In its narrowest sense, the term “measurement” involves a unit, which is a particular instance of the
measurement domain. Any thing in the domain is then expressible as being equal to k of the unit
things. The value of k is clearly different for different choices of the unit thing.

Symbolic representations have behaviors of their own, such as ordering among letters and numbers,
and arithmetic among numbers. Such behaviors may or may not correctly model the behaviors of the
underlying phenomena. Ordering often makes sense: it’s common sense that a rock whose weight is a
bigger number is a heavier rock (assuming common units). On the other hand, compass headings don’t
have order: NE is not bigger or smaller than SE, nor is a direction of 30° bigger or smaller than a direc-
tion of 60°. And it is at least arguable whether a higher IQ number implies a smarter person, or a
higher letter grade implies a better performance, or a higher price implies a greater value.

Arithmetic can be similarly misleading. Just because numbers can be added and subtracted doesn’t
mean that these operations are meaningful for measurements. Weights are well-behaved: putting two
rocks on a scale yields a measurement which is the sum of the individual weights, so it is sensible to
add weight measurements (in consistent units, of course). But it doesn’t make sense to add tempera-
tures, or numeric compass headings, even though they are numbers. If the direction of travel of two

15

ships is 30° and 60°, what does it mean to add those two numbers? (Curious coincidence that temper-
atures and headings are both measured in degrees.)

Other arithmetic behaviors may also fail to correspond to the underlying phenomena. Adding a posi-
tive number to a positive number yields a larger number, but such ordering doesn’t hold for circular
angles: adding 200° and 200° yields an angle of 40°. Adding the same angle to two angles can invert
the order of the results: 50°<70° but 300°+50°>300°+70°, since 350°>10°.

Subtraction doesn’t always make sense, either. While numbers are closed under subtraction, some-
times yielding negative numbers, it doesn’t follow that subtracting a large weight from a small weight
yields a weight.

Even simple counting can be anomalous. With angles, counting does not lead to a purely monotonic
sequence. As we keep accumulating one-degree increments, we eventually come back to angles we’ve
encountered before. Among other things, this implies that the “measure” of an angle is not unique:
x=x+360i for any integer i.

Which operations with dimensioned expressions are valid, and what their results signify, depends on
the type of underlying phenomena involved. Weights, temperatures, angles, velocities, and intelligence
all behave differently. Even though measurements are expressed as numbers, we can’t assume that all
properties of numbers automatically apply in these domains. In fact, it’s necessary to reason the other
way. We need to independently establish whether certain principles hold in the underlying domain in
order to justify applying various arithmetic procedures to the measurements. In other words, we need
to understand the extent to which we can or cannot reason about a measurement domain by reasoning
about the measurement numbers.

Simply put, you can get into trouble if you just assume that properties of numbers automatically imply
corresponding behaviors in the underlying domain.

Subsequent sections identify a set of principles (sometimes in the form of axioms) which may or may
not hold in various measurement domains. If an axiom doesn’t hold in a physical domain, then arith-
metic operations which depend on that axiom may not be meaningfully performed on measurements
of that domain.

Such principles serve several purposes. First of all, they can be grouped into subsets to characterize
different sorts of measurement systems. Such sets of principles precisely and generically describe
different levels of support which can be provided in a language.

Further, the principles provide an analytical tool, helping to determine precisely whether and how a
given domain can be subjected to measurement. The analysis can expose ambiguity and fuzziness of
concept, leading sometimes to differentiation of similar domains, sometimes to clarification of exactly
how measurement principles can be applied. The principles also illuminate why certain domains such
as color or beauty are difficult to measure.

1.5 What is Measurement? (1)

What is measurement? It’s hard to say with great precision; every generalization seems to admit a
counterexample.

In its most general sense, measurement is a form of naming, assigning a symbolic representation to
some concept so that we can communicate it. It enables us to say that something is 10 feet long, weighs
100 pounds, and is heading northeast at 100 miles per hour.

How does measurement differ from naming? We usually think of measurement as yielding numbers,
but there are exceptions: school grades, compass headings of the form “NE” (or northeast), and perhaps
the names of colors — if we agree that color constitutes a measured thing.

16

Naming is generally associated with identifying concrete things such as people or chemical elements,
while measurements identify properties of concrete things, such as their weight, speed, direction, and
so on.

Measurement provides representations which distinguish members of a set, such as the various
weights, or the various directions. In this respect measurement is still similar to naming, as with
people or chemical elements.

Well, some measurements are like names in that they identify specific values, but other measurements
denote relative performance in some trial. A batting average relates to absolute data about a batter’s
hits and times at bat, while first, second, and third place in a race refer to relative performance as
compared to whoever else was competing at the time. Score on a standard test vs. grading on a curve.

Some measurements are relative but objective, while others are subjective. School grades?

Naming and measurement are both used to communicate information. Measurement, in addition,
facilitates certain operations on the information. The most elementary of these is comparison: higher
numbers imply “more” of the quality; earlier letters in the alphabet imply “greater” performance. Thus
measured things have an ordering property: one is “larger” than another.

Most things, that is; there are exceptions. Compass headings, for example, don’t have such sense of
comparative order. East is not bigger or smaller than northeast. Even when expressed as numbers, a
heading of 90° is not intrinsically bigger than a heading of 45°. One may make a bigger angle with the
north-south line than the other, but the heading is not bigger.

Compass headings do, however, have a sense of “betweenness” — in most cases.

A thing is a dimension only by convention. In some subdomains of physics, the speed of light is defined
to be 1, and speeds do not appear in equations. Some domains assume a two-dimensional world, and
have no notion for height. The laws of electricity can be restated in terms of numbers of electrons,
rather than charge. The decision to regard a thing as a dimension, and to measure and specify its
instances, is a matter of convenience. Similarly, the notion of measurement is based on a conventional
measurement procedure. Pulse width is usually measured between the 10% and 90% amplitude points,
while Length is measured between extrema. Length is measured using straight-line distance (but
sometimes great circle distance), weight is measured in a frame of reference which is stationary with
respect to the earth’s surface (as opposed to free fall, for example). Finally, the preciseness of the thing
being measured is a matter of both convention and context. Statements of the distance to Los Angeles
rarely specify whether they mean the nearest city limit, city hall, a marker at city hall, the center of
the marker at a particular date, etc.; but sometimes they do specify those things. We assume that those
issues have been settled for the context in which measurements are made, and discuss what is required
to communicate and manipulate them.

1.6 What is Measurement? (2)

Measurement communicates and computes.

Measurement provides a way of systematically naming certain kinds of things when there are too
many of them for individual names. Imagine that we could only refer to a particular day as “Bill Kent’s
birthday” or “the day Bill’s first cat died” or “the day Farmer Brown’s barn burned down”. We’d have
a hard time inventing unique names for every single day. Even with unique names, we’d probably have
lots of names for any given day, though most such names wouldn’t be recognized by many people. And
we wouldn’t know very much about days named in such a way.

Imagine trying to name weights or lengths that way. As wide as Bill’s hand. As far as the distance
between New York and Los Angeles. As tall as the Empire State Building. As heavy as Bill when he
was born. As heavy as Farmer Brown’s prize bull.

17

Measurement gives us a sense of certain relationships among things. It tells whether one is less or
more than the other in some way, or if they happen to be the same. And it tells us whether they are
close together or far apart. It gives us a way to express what we want or need for a certain situation,
and to judge whether something satisfies our needs.

Measurement provides a way of correlating things with numbers, so that we can assume they behave
in certain familiar ways. We know what it means to add, subtract, multiply, divide, and compare
numbers, so we can do the same sorts of things with the things we measure. We get a sense of what it
means to add two weights together, or to figure out the ratio between them. The notion that “this stone
is half as heavy as that one” means something to us in precise, numerical terms.

We can’t measure any old thing we want. We can only measure things with numbers if they behave
like numbers to begin with. If we didn’t start out sensing (and agreeing) that two of these stones weigh
the same as that one, then it wouldn’t make sense to do arithmetic with the measurements. And just
because we can assign numbers to things, it doesn’t follow that they are measurements. Lots of things
have serial numbers, like employees and cars and television sets, but it doesn’t make much sense to
add or divide these numbers. They aren’t measurements.

Suppose you’re trying to figure out a way to measure certain things. You should first check whether
those things have any behavior of their own that’s similar to the way numbers behave. Is there a sense
of order that lets you say one is less than the other in some way? Is there some way of combining two
of those things in a way that resembles addition? Can you imagine some sort of numeric ratio between
two of them, to support a notion of dividing one by the other? Such questions might explain in a funda-
mental way why it’s so hard to measure intelligence, beauty, color, efficiency, proficiency, productivity,
and a host of other things we’re anxious to measure.

By these criteria, temperature is clearly not in itself a well-behaved units-based interval domain. At
most we have a sense of order by which we can compare the magnitude of two temperatures or temper-
ature intervals. My coffee is hotter than yours. His coffee is even more hotter than yours than mine is.
But we can’t really add them. Do we have any real intuition that the temperature of my coffee and the
temperature of your coffee combine to be the temperature of his coffee? Could I judge that the warmth
of your coffee is about the same as the difference between his and mine? Not at all.

What are the numbers of temperature? A measure of a very indirect phenomenon. We happen to have
noticed that, for most substances, when we agree that a sample of it has become warmer we also
observe that it occupies more volume. When a certain sample of mercury or alcohol in a tube feels
warmer to us, it also rises higher in the tube. Is it twice as warm when it’s twice as high? We don’t
know that. Has the warmth changed by twice as much when the level rises twice as much? We don’t
know that either.

We don’t really know that there is a “unit” of temperature. Do we have any independent judgement
that if his coffee is one degree hotter than mine, and mine is one degree hotter than yours, that the
difference in warmth is exactly the same in both cases? No. All we know is that the distince the
mercury moves in its tube is the same. The “unit” is really a unit of distance. Two degrees and three
degrees mean that the distance in the tube is two or three times as the distance for one degree. Not
that we know that something is essentially twice or three times as much in warmth.

[I think we’ve also discussed the following. As a first approximation, specific heat suggests that there
is in fact some basis for additive behavior of temperature. There is a sense in which it can be demon-
strated that the amount of heat required to raise the temperature of a given substance by one degree
is constant. This can be done in a non-circular way, which doesn’t depend on the artificial nature of
temperature measurement. However, I believe that this constant is not precisely constant, i.e., that
the amount of heat required to raise a substance’s temperature from 10 to 11 degrees is not quite
exactly the same as the heat required to raise its temperature from 100 to 101 degrees (assuming no
state change in that temperature range). Is that true, then this adds support to my thesis about the

18

nature of temperature measurement, namely that temperature doesn’t really correspond to an additive
behavior.]

1.7 Goals of Measurement Systems

In general we think of a measurement system as something involving units, providing the ability to do
units conversion and to validate and evaluate expressions involving units. In broadest terms, a
measurement domain contains a set of physical quantities we wish to map into symbolic representa-
tions which convey information and support certain operations, in a manner consistent with our intu-
itive understanding of behaviors in the domain. The term “measurement” is used to mean either the
mapping process or the resulting symbolic representation. A measurement system thus provides:

• Symbolic notation: a mapping from the abstractions in some domain (such as weights or perfor-
mance in a course) into some symbolic representation.

• Operations: operations on the symbolic representations which should mimic behaviors of the
abstractions being represented. For example, addition of numbers representing weights should
preserve the physical behavior of weights being combined.

1.7.1 Symbolic Representations

The simple business of assigning symbolic representations to the abstractions in some domain is some-
times a major challenge in itself.

We usually think of measurement systems as dealing with numbers, but non-numeric representations
are sometimes used. School grades and letter compass points (e.g., SSW) are examples.

Some measurements require a vector of representations rather than a simple number.Velocity is the
most familiar example, requiring two values to express the speed and heading. Other examples include
location in n-dimensional space, and colors expressed in terms of hue, saturation, and value [explore
the behavior of those three as scalar measurements]. This category doesn’t include “additive” notations
such as “five pounds, three ounces” which can trivially be transformed into a single number. True
vector measurements don’t have a single-number equivalent.

Even scalar (single-number) measurements can be difficult to quantify. Thus the “soft” sciences have
problems trying to assign measures in such domains as intelligence, performance in various senses,
usability, quality, productivity, efficiency, wealth, net worth, cost of ownership, and various other
economic indicators. Similar issues also arise with beauty contests, movie and restaurant ratings, and
judging of Olympic events. Symbolic representation can often be misleading, implying greater preci-
sion than actually exists, and sometimes even giving rise to incorrect comparisons. Does higher IQ
really imply greater intelligence?

In this section we focus primarily on well-defined scalar measurement systems. The other issues
should be dealt with in other sections of the main paper.

1.7.2 Operations

Various combinations of the following operations with symbolic representations are supported in
various measurement domains:

• Communication. This simple facility should not be overlooked, particularly in non-numeric
representations. Letter grades and compass headings convey information. So do all the other
measurement notations. In the case of letter grades or economic status indicators, this may not
always be self-evident. More generally, we expect numeric representations to convey some intu-
itive sense of magnitude, i. e., how big, how much.

• Equality comparison. We generally expect that if the symbolic representations match, then the
abstractions being represented are the same in some sense. (The converse needn’t hold; units

19

conversion presumes that equal quantities may have different representations.) Even this could
be problematic, as with school grades. Exactly what does it mean to give the same grade to two
students in two courses at two schools?

• Order comparison. If one symbolic representation is “larger” than another, we expect the corre-
sponding underlying abstraction to be larger than the other. Problems again, as noted with IQ’s
and school grades.

• Combination within a domain. We very often wish to add the measurements of two weights, or
of two lengths. This is intended to mimic the behavior of combining the underlying abstractions.
Adding the measurements of two weights should yield a result that’s consistent with the effect
of putting two rocks on one pan of a balance scale. Other operations such as subtraction, multi-
plication, and division should make similar sense.

• Combinations across domains, as in dividing Distance by Time to get Speed.

1.8 This Paper

1.8.1 Goals

This paper explores the functionality required for a computer system supporting dimensioned data,
that is, data about physical quantities, including their dimensions and units. It advances a theory
which covers not only well-behaved physical quantities like mass and length, but also ill-behaved
quantities like temperature, concentration, and “dimensionless” quantities. The theory is extensible to
user-defined dimensions and units. It is motivated by the process of measuring physical quantities,
and therefore touches on two related issues: the context surrounding measurements, and the precision
and accuracy of measurements.

Previous efforts to support dimensioned data have been weak and incomplete [refs] . We hypothesize
that the reason for this is the lack of an underlying theory. This paper fills that gap. An additional
benefit is that a thorough exposition of the subject is interesting in its own right.

Thus a major contribution of this paper is a significant enhancement of the theory of dimensioned data.
Another important contribution is the specification of a type system for programming languages, first
in language-neutral terms and then in terms of various specific language bindings. [Will we ever get
around to it?]

The term “Dimensional Analysis” [9, 25] is sometimes used in this context, but it applies more properly
to the use of dimensions to discover some of the equations which model physical problems. That is not
a subject of this paper, and we don’t use that meaning of the term here.

1.8.2 Scope

We focus more on new areas not being investigated elsewhere. Other known problem areas, e.g., units
conversion, accuracy and precision, are being investigated elsewhere and get less attention from us.

We cover as many aspects of dimensions and units as possible, and as many aspects of user-visible
functionality as possible. Our treatment is more thorough than any previous work, although we
exclude some areas. People in various times and contexts have chosen to regard different things as
dimensions, and to describe the world along those dimensions. We sidestep such considerations; if
someone wants to define Earth, Air, Fire and Water as dimensions, he can do that. We need to know
only whether two dimensions are equal, and whether two units are equal. This allows us to treat “6
mm + 11 mm” one way, “6 mm + 11 inches” a different way, and “6 mm + 11 kg” in a third way.

Similarly, when people quantify the world along some dimension, they may apply different forms of
arithmetic to the resulting numbers. R1+R2 describes the resistance of R1 and R2 connected in series,
but T1+T2 does not describe the temperature when two fluids at temperatures T1 and T2 are mixed
together. That temperature can be computed, however, and the computation makes use of the usual

20

meanings of addition, subtraction, multiplication and division. In our work, therefore, we don’t try to
change the meanings of arithmetic, vector mathematics, statistics, etc.; we merely study their applica-
tion to physical quantities.

Having said that addition, subtraction, etc., mean the usual thing, we need to characterize the kinds
of data for which this behavior gives intuitive results. We do that in Section 34.7. Informally, they are
data which represent counts of some unit along some dimension.1 This category excludes many other
ways of quantifying the world, such as golf scores, wire gauges, pineapple sizes (the number of pineap-
ples that fit in a standard box), preference rankings, intelligence test scores, beauty contest scores
(number of judges who rank the candidate first), etc. These are interesting (some are discussed in
[8,13]), but their arithmetic is ill-behaved, and in practice these quantifications are rarely used for
more than ranking or binning.

The well-known rules for dimensions and units, such as in the resistance example cited above, are
simple. They are taught in high school, implemented for the length dimension in draftsmen’s calcula-
tors, and implemented for a moderate set of dimensions in the HP-48GX handheld calculator. We refer
to such treatments as basic dimensional support. There are also unusual cases, however, and they are
unusual in many different ways. Some of the issues we will discuss in this paper, and which our theory
will address, are enumerated in Section 2.

We cover those issues in this paper, but we do not try to cover more than requirements. We do not
attempt to design a system, to choose which requirements have to be met to satisfy some market
segment, nor to say how to weave dimensions and units into any existing product. We occasionally
comment on likely interactions with programming languages, but we do not recommend any particular
language. We occasionally comment on efficiency or other implementation issues, but we raise the
issues only because they are interesting; we make no claim about how important they are, and we do
not claim to raise all important issues.

1.8.3 Approach

Our general approach to such problems is to introduce more “dimensions”, and more complex ways in
which dimensions interrelate as compared with traditional dimensional analysis. In traditional dimen-
sional analysis the base dimensions are orthogonally independent, such that any dimension can be
uniquely represented as a multiplicative combination of base dimensions. This scheme is simple and
elegant, but at the price of admitting the sorts of problems outlined above. We are essentially re-
assessing this tradeoff, exploring how much more useful functionality can be achieved at the price of
increased complexity.

Some of the new sorts of inter-dimension relationships:

• Specialization.

• Generalization.

• Point/interval sort of correspondence.

• However we solve the multiple angle domains.

• Signed vs. unsigned. (Might be same mechanism as angle family.)

• Subtype (if different from prior solutions.)

1.8.4 Our Contribution to Dimensional Support

We draw strict distinctions among quantities, dimensions, units, conversions, and between those
things and their representations. No two of those things lie in a 1:1 correspondence, and thus we are

1. Actually, we consider any isomorphism to such a count.

21

able to capture a certain amount of clarity and representational power which is missing from papers
which confuse or combine them. We are also able to discuss issues which aren’t considered in other
work. We relax the assumption of a 1:1 correspondence between dimensions and their canonical repre-
sentations (see Section 3.3), and explore both the 1:n case and the n:1 case. We deal with non-trivial
dimensions and units, such as date, temperature, and angle, as well as time-varying and “dimension-
less” quantities. We proceed without assuming an implementation in any particular programming
language, though we note issues of representation and supporting functionality as they arise.

1.8.5 Prior Work

The notion of using dimensional analysis to detect errors in scientific and engineering computation has
been used since the 1920’s [9, 10]. With the advent of programming languages supporting user-defined
types, various researchers [6, 7, 11, 16, 17, 18, 19, 20, 22, 26, 27, 29] have proposed building support
for dimensions into Pascal, Ada, C++, ML, and relational database management systems, both to catch
errors and to perform automatic unit conversions.

Most of this prior work has been limited by what was achievable through small extensions to the type
system of the programming language under consideration. To varying degrees, all of it has mixed the
notions of dimension, unit, conversion and representation, and has given uneven treatment to such
anomalous cases as temperature, logarithmic units, dimensionless quantities and time-varying
conversions. [27] escapes the limitations of programming languages, but intermixes dimension, unit
and conversion almost completely. All assume a 1:1 correspondence between a dimension and its repre-
sentation in terms of reference dimensions.

2 The Skeletons in the Closet
This is a reference list illustrating the problems and anomalies we will be addressing. The intent is
that all situations listed here are discussed, and hopefully solved, in the document, and that all prob-
lems and anomalies addressed in the document are listed here.

>>ToDo 1: Check that all sample problems are covered in text.

[Oh well, the ordering and grouping seem to be breaking down. Need to fix it. It’s also
far from complete.]

2.1 Domain Semantics

• Computational anomalies:

– Some angles are measured modulo π/2, some modulo π, some modulo 2π, and some are simply
measured cumulatively, not modulo anything (it does make sense to wrap a line around a
capstan for 5π radians). Other angles, denoting directional headings, might not behave quite
like measurements at all.

[Do we really have examples of angles measured modulo π/2 or π? Interior angles
[Section 7.1.3] have the property that π+x=π-x, but that’s not modulo arithmetic.]

Is 400° the same as 40°?

Is a heading of 90° (East) the same as an angle of 90°?

Is East less than West?

Is 90° < 270°?

Does East + East = South?

– Is the difference of two temperatures still a temperature? Really in the same sense? A
temperature of 5° C is 41° F, while a temperature difference of 5° C is 9° F.

22

– It makes sense to add, multiply and divide temperatures, but only in the Kelvin scale.
Temperatures in any scale can be subtracted.

– It doesn’t make sense to add, multiply or divide dates in any scale, but dates in any scale can
be subtracted. The same is true of locations. However, the differences between dates, or loca-
tions, are not dates or locations.

– Time is the same kind of thing as date, but it is also sometimes measured modulo 24 hours,
or modulo 12 hours. Time and date are usually expressed separately.

– Measurement of time is dependent on time zones and time of year, as though there were 24
parallel times lines (plus one for “absolute” time) whose positions shift twice a year. Events
occurring synchronously might occur at different times, even on different dates. Events occur-
ring at exactly the same date and time might not occur synchronously.

– Some clocks start and stop, and time lines might be discontinuous with respect to each other.
Touchdowns scored at 5 and 6 minutes into the first quarter may have occurred at 1:15 and
1:20 in the afternoon.

– Is the difference of two weights always a weight? Even if negative? The same can be asked
about any dimension.

– Equality

The time domain is really problematic. When is a month a month? January and February
are both months; are they equal? How many days in a month? Are any two years equal?
What does it mean to add a month or a year to a given interval? And let’s not forget about
the mythical 30-day month and 360-day year.

Lots of domains have equality: weights, temperatures, spatial locations, colors. Lots of
domains don’t, such as beauty and intelligence. (Don’t confuse equality of measurement
with equality of physical quantities. Equal IQ doesn’t really mean equal intelligence.)

• Which of the following are well-behaved measurement domains? Why or why not? What are their
significant properties?

– Locations in space.

– Headings.

– Money values.

– Intelligence.

– Beauty.

– Athletic performance of various sorts (batting average, slugging average, team standings,
quarterback rating, Olympic event scoring, boxing results, gold/silver/bronze medals, ...).

– Productivity, efficiency, usability, network behaviors, ...

– Complexity (in the context of software metrics for application development).

– School performance (test scores, class grades, GPA, standing in class).

– Restaurant and movie ratings.

– Color temperature.

– Jitter (ask Bruce and Dan) .

– pH.

– dB.

23

– Richter scale.

– Jolt.

– Hardness.

– Elasticity.

– Relative humidity (a ratio of concentrations).

– ...

• How do we characterize the notion of a “well-behaved measurement domain”? Are there different
sorts, characterized by different behaviors? Thus:

– How many different “angle” domains are there?

– How many different time domains?

– Are time and date really different domains?

– How do we deal with weight and mass?

[Hypothesis: major division of measurement domains/paradigms into units-based or not.
Each one then has further subdivisions.]

• Angles have dimensions of Length/Length; so do strain and length error. Clock rate error has
dimensions of Time/Time, and concentration has dimensions of Volume/Volume and Mass/Mass.
The conventional theory states that these are all equivalent, and may freely be added, compared
and assigned to one another.

• Vector physical quantities (like velocity) are well-modelled by many of the usual vector opera-
tions, but outer product is meaningless, and multiplication by a scalar yields the expected result
in only one coordinate system.

• Torque and Work both have dimensions of Force×Length, but are not the same thing. The
conventional theory says they are equivalent.

• The conventional theory says that all lengths are equivalent, so that, for example, a length may
be added to a width (yielding what?), and Height2 =Area.

• The conventional theory makes certain dimensions incompatible when they shouldn’t be, e.g.,
concentrations expressed as Volume/Volume or Weight/Volume.

• Instances of physical quantities:

It is necessary to be able to identify, refer to, and differentiate various instances of physical
quantities. This often takes the form of some property of some “subject” under certain circum-
stances, such as the temperature at which water boils at a specified pressure, the weight of
Bill Kent on the planet Earth at 8 AM on May 19, 1994, and the distance between New York
and San Francisco.

Such references are often somewhat ambiguous, leading to issues of precision and accuracy.
Bill’s weight may or may not include his clothing. The distance between New York and San
Francisco may be measured between various precise points. It might not even be straight-line
distance; it might be airline miles or driving miles.

We sometimes visualize an angle in terms of two lines meeting at a point. Are we always sure
that a picture like < means the inside angle? How do we then refer to an angle greater than
180˚?

• Reality?

24

It may also be useful to clarify whether a domain need be limited to quantities which can exist
in reality. Dimensional systems are used not only for measuring real phenomena, but also for
describing hypothetical or fantastic situations. Does the speed domain include speeds greater
than the speed of light? Should 2c be an invalid speed expression? (Ask your friendly neigh-
borhood physicist about tachyons.) Does the energy domain include half a quantum? Then
perhaps it might also be meaningful in some contexts to contemplate negative masses, and
negative temperatures.

• Color

The kinds of combining operations we might imagine for colors include mixing crayons on
paper, mixing lights, or mixing filters. I can’t image any sort of combining operation and any
sort of color such that repeatedly combining that color with itself will eventually reach any
arbitrary color. Is there an inherent reason for this? Is that because it is a vector quantity?
(No, that’s probably not the whole reason.)

Furthermore, I find it hard to even imagine a combining operation under which combining a
color with itself yields anything other than the same color, except for an operation that anni-
hilates the color to yield black.

Explore the behavior of color as a vector of hue, saturation, value (HSV). Does it still satisfy
our intuition that all vector quantities can be combined by vector addition? Also explore the
behavior of each of those components as a scalar measurement domain. Actually, is color an
HSV vector, or a vector of such vectors, one for each primary color?

• Sounds and Music

Note names in music constitute nomenclature for cyclic values, just like days of the week or
months.

We may want to distinguish between combinations of sounds (directly experienced physical
phenomena) and combination of frequencies (attributes of sounds). There are several analo-
gies here with light (color), including the distinction between pure and mixed frequencies.
Combining sounds, i.e., the result of playing two sounds together, is not simply described as
a sum of frequencies.

• Temperature

The more we say about this stuff, the less I understand how temperature works. Little of the
preceding analysis seems to apply to temperature.

Perhaps the only way to rationalize temperature is to be very simplistic and consider the coer-
cions that go on in the measurement process. What is a degree of temperature? It’s a distance!
What we look at on a thermometer is how far something has moved up or down in the tube.
The coercion is via the thermal expansion of the substance in the tube. We don’t really know
anything about the linearity of heating, or expansion. We simply mark the tube in uniform
distance increments. We don’t know if it takes twice as much heat to make the fluid move up
twice as many notches. [There seems to be some dependence here on the uniformity of a
substance’s specific heat at different temperatures.]

So, temperature makes sense if we consider it a coercion to distance. Our naive intuitions
about temperature are really based on the behavior of distance.

As with volumes, mixing of substances doesn’t give the right metaphor for combining temper-
atures. Ignore chemical reactions, i.e., let’s assume we are dealing with kettles of water. They
act somewhat like the self-nils of color: mixing two kettles at the same temperature yields
something of the same temperature again. More generally, mixing two kettles does not yield

25

something bigger than either one separately, but rather something in between: x<y ⇒
x<x#y<y.

A better metaphor for combining temperatures would be expressed in terms of taking heat
out of one kettle and putting it into the other. But the parallel between heat and temperature
is still a difficult concept to grapple with [cite that reference].

On the other hand...

Temperature can be defined in a way that makes it proportional to the square of the speed of
something, perhaps an average particle. This yields at least a natural nil concept, corre-
sponding to a speed of nil for an average particle. The interesting observation here is that the
zero number for the common measurement scales does not correspond to the natural nil of
the physical quantity.

This definition also yields a basis for defining a combinational operator. Suppose ti=ksi
2. Then

t1#t2=t3 would be defined to mean s1
2#s2

2=s3
2 — provided we could explain what it meant to

square a speed, or to combine such things. (Tedious reminder: we are working with physical
quantities, not numbers.)

• Counts, Frequencies, and Molarity

In some domains the measure consists of simply counting things, as in populations,
committee or team sizes, and inventories. The unit is intrinsically defined as one thing, and
we are simply counting how many things. The combinational operator is intrinsically defined
as addition.

Combination must be done carefully, in terms of distinct things. Combining the sizes of two
committees does not necessarily correspond to combining the committees, if some people are
serving on both.

The unit notion has to be carefully distinguished from other properties. Bigger populations
do not assure larger weight or volume. Walls can be measured in bricks, even if the bricks are
of different sizes. Walls whose sizes in bricks are equal may have different weight, height,
area, or volume. (Distinctness matters here, too. If two walls are connected — i.e., share
bricks — then their combined size is not the same as the number of bricks in the two walls.)

Sometimes the things being counted are events, like births, or arrivals, or a cyclic phenom-
enon reaching a maximum or minimum. Frequencies or rates then correspond to counting the
number of such things in some interval of time. This is the meaning of birth rates, arrival
rates, and frequencies as expressed, for example, in cycles per second. Combining such things
sometimes needs to be carefully distinguished from mixing together the underlying
phenomena. Combining frequencies for measurement purposes does not correspond to
composition of frequencies, as might arise from mixing tones.

Molarity is a form of concentration which counts the number of particles (molecules, atoms,
ions) in a volume. Here count is serving as another variation of amount.

• Coordinate Systems

Coordinate systems provide two essential ingredients: an origin to establish the reference
point, and a scale for measurement. In n-dimensional systems, there is also an “orientation”
provided by the position of the axes. Is that significant here?

• A funny “unitless” example (mentioned by Bruce):

The electrical resistance of rectangular plates having the same composition and thickness is
linearly proportional to length and inversely proportional to width. Hence the resistance is

26

the same for all such plates having the same aspect ratio. In particular, the resistance is the
same for all square plates. Therefore, the resistance of this material is specifiable as k ohms/
square. Not “square something”, just “square”. Can we make a sensible dimensional analysis
of that?

2.2 Units and Conversion

• Degrees of temperature and degrees of angle are different units which happen to have the same
name. They measure unrelated domains.

• Degrees Fahrenheit and degrees Celsius are different units even though they measure the same
domain. They are based on different elements of the domain.

• Degrees of circular measure and degrees of angular rotation are the same units even though they
are measuring different domains. These domains are closely related.

• Are pounds of weight and pounds of mass the same units? If so, these related domains are not
subsets of one another.

• Some units seem to be reserved for measuring specific things: hands for the height of horses,
fathoms for water depths. Are furlongs used for much besides race courses?

2.3 Computational System Support

(Includes language and representations.)

• Syntactic matters:

– Literal dimensional expressions.

• Language facilities for defining dimensions, compatibilities, units, etc.

• Tradeoffs between usability, rigor, consistency, etc. in language facilities.

• Internal representations, performance, etc.

• Concerns regarding precision, accuracy, context, etc.

• Which type coercions are legal?

• How should dimension, unit, precision and accuracy be inferred on input of data?

• How should units, precision and accuracy be specified on output? Should we say volts/ampere or
ohms?

3 Basic Concepts

3.1 The Central Issue: Operational Consequences

For the purposes of computational support, the essential question is this: what happens when certain
operations are applied to measurement terms? It breaks down into these parts:

• How are the operands recognized?

• Under what conditions is the operation considered to be an error? This relates to the notion of
“compatibility”.

• When not an error, what are the quantities, dimension, and units of the result?

• What sorts of auxiliary operations are implicitly invoked, such as casting or units conversion?

[A little padding/transition needed here.]

27

3.2 Quantities Are Distinct From Their Expressions

The essential question is phrased in terms of computational operations, but that’s not the place to
start.

The appropriate perspective on all this work is rooted in a fundamental viewpoint: a physical quantity
is a different thing from any of its expressions. Just as an athlete’s performance is a different thing
from a gold medal, so is the weight of a rock a different thing from an expression of the form “3 grams”.
The length of a certain stick is a certain concept, quite distinct from any such expressions as “6 feet”,
“72 inches”, “2 yards”, and so on.

The first obvious difference is that the length of the stick is just one thing, while we have a substantial
number of different expressions which “represent” that length. It’s just like the distinction between a
person and all the different names and identifiers which might designate that person.

More important, we can imagine operations performed directly on such physical quantities. The
combined lengths of two sticks is the same as the length of a stick which matches the first two sticks
laid end to end. That operation can be done without any reference to numbers or arithmetic. One of the
biggest sources of our difficulties with dimensioned data is a failure to appreciate this distinction. We
confuse operations on physical quantities with arithmetic on numbers. One of the crucial things we
have to do is to objectively assess the extent to which numeric operations do or don’t mimic the actual
behaviors of the underlying quantities, and to only use the arithmetic analogs when they do in fact
correctly reflect the underlying behaviors.

In order to decide how the computational operations should behave, we should clearly understand how
they correspond to the behaviors of the natural phenomena.

3.3 Some Terminology

We will call a thing which can be measured a physical quantity. Physical quantities can be categorized
by dimension. A dimension describes the kind of physical quantity involved, such as time, length,
mass, etc. In database and computing systems, we are interested in type-checking expressions repre-
senting physical quantities, and are thus concerned with the type of those expressions and their compo-
nents.

Each dimension has an associated set of units. A particular physical quantity, such as an instance of
Length, does not have any associated units. However, it does belong to a dimension, which defines a
set of units which could be applied to it.

Some sources [3,4,5] use “physical quantity” to mean “dimension” as we have defined it here, and have
no term corresponding to what we call “physical quantity.” On the other hand, we do not limit physical
quantities to things relevant to physics, so the notion can be extended to include other things such as
money. We don’t care what “physical quantity,” “dimension” and “unit” mean; we merely specify here
how things of those types will behave (of course, we intend for that behavior to closely model what is
commonly meant by “physical quantity,” “dimension” and “unit”).

Algebraic relationships exist among some dimensions, such as

Force = Mass × Acceleration

Speed = Length/Time

Acceleration = Speed/Time = Length/Time2

Current = Voltage/Resistance

Relationships among dimensions are not the same as something like

yards = feet/3,

28

which is a relationship between units, not dimensions.

A dimension may or may not have a name. Some dimensions are designated only by algebraic compo-
sition of other dimensions, such as Price/Weight or Weight/Length (which might correspond to such
units as dollars/ounce or grams/cm).

Algebraic equations among dimensions can be rewritten with any of the dimensions as the dependent
variable, defined in terms of the others. Hence, none of them is intrinsically more fundamental than
the others. However, by convention [1, 3, 4, 5], certain dimensions are designated as the reference
dimensions. The other dimensions are then called derived. The expression of a dimension as a multi-
plicative combination of reference dimensions, reduced to lowest terms (see [6]) is the canonical form
of the dimension. This convention may affect the way dimensioned data is stored internally, and the
way certain algorithms for dimensional analysis are executed, but has no bearing on the external
semantics of dimensions.

For documentation purposes, we will [maybe?] find it useful to define a default alias syntax for naming
any dimension, such that Length3.Time2’Mass names the dimension whose canonical form is
Length3*Time2/Mass. Such notation will be used in this document to illustrate declarations on vari-
ables, and to mnemonically reflect the declared types in the names of the variables. Thus a variable
named xLength3.Time2’Mass is restricted to values corresponding to that dimension. [Other nota-
tions, looking more like canonical forms or signatures are possible, but seem to run into problems
when writing expressions. E.g., need to distinguish the name of a variable from an exponentiation
operation on the variable.]

Physical quantities can be further categorized into scalar and vector physical quantities. Scalar phys-
ical quantities are those whose representation needs only a single number (which could conceivably be
a complex number [can’t we dredge up an example?]). Length, mass, and speed are all examples of
scalar physical quantities. In contrast, vector physical quantities need more than one number to be
represented. Velocity is an example of a vector physical quantity because it requires both a speed and
a heading, such as 60 m.p.h. at 70 degrees. Position in n-dimensional space can also be thought of as a
family of vector dimensions. Vector dimensions are discussed in Section 12. We consider derived
dimensions to be multiplicative combinations of only scalar dimensions.

>>ToDo 2: Are any scalar dimensions represented with complex numbers?

3.4 Introduction to Units

In measurement, a “unit” denotes a particular mapping between physical quantities and numbers, for
a given dimension. Thus, depending on the unit, my height might map into the numbers 72, 6, or 2,
among others. At the same time, a unit denotes a distinguished physical quantity, namely the one
which maps into the number 1 under the associated mapping. The “inch” mapping which maps my
height into 72 maps a certain length into the number 1. That distinguished length is called an “inch”.
Under some other mapping, such as the one which maps my height into 6, it is a different length which
maps into the number 1, namely the one we call a foot.

There is an essential parallel between physical quantities and arithmetic: any length is equivalent to
some combination of 1-inch lengths or fractions thereof, just as any (non-negative) number is equiva-
lent to a sum of 1’s or fractions thereof. This is the basis of the units-based measurement paradigm,
analyzed in greater depth in Section 11.

Units are distinct from their names. Just because “pounds” measure both weight and currency doesn’t
mean we are talking about one unit. The same can be said about “degrees” measuring both tempera-
ture and angles. In each case we have a pair of units which happen to have the same name. Conversely,
although weights might be written as “1 pound”, “2 pounds”, “1 lb.”, and “2 lbs.”, we aren’t using four

29

different units. Those are all the same unit, which happens to have four different names or represen-
tations.

3.5 Dimensions as Types

[I seem to treat “type”, “dimension”, and “domain” as somewhat interchangeable,
yet each seems to have its own connotation. Need to sort that out.]

To discuss rules about computations on dimensional terms, it makes sense to treat dimensions as
types.

Dimensions have instances. All the lengths are instances of the type Length, all the masses are
instances of the type Mass, and so on.

These types are somewhat different from traditional data types in that they don’t have an associated
data representation. It’s as though we had an abstract Integer type whose values are simply the
abstract integers, without restriction to a particular representation such as decimal, hexadecimal,
binary, roman, etc. Specific representations for dimensions depend on the choice of units, which will
be discussed later.

Spreadsheet programs treat dates like that. A column that’s defined to contain dates isn’t committed
to any particular representation. That’s a format specification, which can be different for different cells
in the column, and can even differ for the same cell at different times. Despite these format differences,
the spreadsheet program always knows that this column contains dates. If no format is specified, the
spreadsheet program can always fall back on a default format.

Like types, dimensions will be used to constrain the values of variables, and also of the arguments and
results of functions and procedures. Thus a given variable (or function argument or result) might be
declared to be of type Length or Mass.

Similarly, the allowable operands of operations will be constrained by such types. Addition will be valid
between two Length terms or two Mass terms, but not between a Length term and a Mass term.

The union of the dimensional types is also a type, comprising a supertype of each dimensional type. Its
instances are all of the physical quantities; we call this type Physical Quantity (or PQ).

MassLengthTime N-positionVelocity

Physical Quantity

30

The type Physical Quantity is covered by its subtypes—every physical quantity belongs to some dimen-
sion. The subtypes of Physical Quantity are instances of the type Dimension. [Name conflict: opera-
tion and type.] For example, Length and Mass are subtypes of Physical Quantity and instances of
Dimension. The type Physical Quantity is characterized by an operation we might call Dimension,
which returns the dimension of any physical quantity. Thus Dimension(x) might return something like
Length or Mass as its result.

>>ToDo 3: Sort out name conflict: Dimension as operation and as type.

This type structure is analogous to employees and jobs. The type Employee might have subtypes Engi-
neer and Programmer. The type Job might have Engineer and Programmer as instances. Thus Engi-
neer would be both a subtype of Employee and an instance of Job.

The subtypes of Physical Quantity are not necessarily disjoint. An exception to this is quasi-dimen-
sions, introduced in Section 9.

Base types such as Length and Mass are explicitly declared. There is also an implicitly defined infinite
set of types, consisting of the reduced multiplicative combinations of the base types. Thus Length2 and
Length/Time are implicitly defined types, being respectively the same types as Length3/Length and
Length*Time/Time2. These are somewhat analogous to generated (parameterized) types such as
Array(T) or Set(T), which implicitly define a family of types, one for each type T. [Can we provide a
reference for that?]

The set of dimensional types is thus infinite. In a real system or language, the base types will be explic-
itly articulated, while most of the implicit types will not. Some implicit types will be articulated in
order to define additional specifications, such as aliases [Section 4], specializations [Section 8] or
unique units. Length/Time might be explicitly listed, for example, in order to define Speed as an alias
or specialization and mph as an associated unit.

It’s common practice to display such a set of types as a graph. Of course, it’s only feasible to exhibit the
explicitly articulated ones, and not the entire infinite set of implicit types. At present, the only relation
represented by the edges between type nodes in the graph is subtyping. Other relations will be intro-
duced later.

Physical Quantity

MassLengthTime N-positionVelocity

Scalar Vector

Dimension

31

Including derived and vector dimensions yields the expanded type hierarchy:

3.6 Precision and Accuracy

Our knowledge of physical quantities often has finite precision and accuracy. For example, a manufac-
turer of low-cost batteries may specify their output voltage as “1.5 volts, ±0.1 volts,” meaning that the
design average of all their batteries is exactly 1.5 volts (infinite accuracy), but that any given battery
is allowed to lie 0.1 volts either side of that (finite precision). The morning after a burglary, a factory
inventory system may know the contents of a bin of bolts to a precision of 1 (infinite precision,
assuming no fractional bolts), but its value may be off by 100% (more formally, its accuracy is some-
thing like +0%, -100%).

Precision and accuracy affect the manipulation of data about physical quantities in the following ways:

• Arithmetic operations yield a new quantity, with different precision and accuracy.

• Precision and accuracy need to be carried with physical quantities when they are stored or
assigned to variables. Unfortunately, we know of no standard method for representing precision
and accuracy. Logically both are distributions, and require potentially very many numbers to
describe them. In practice [2], people describe precision in number of significant digits or the
width of the interval between readings. For accuracy they use 0-3 parameters, but they differ in
number of parameters and their semantics (mean, stdev; mean±n; mean+n, mean-n; etc.).
System designers will have to deal with this variability.

• A new kind of equality is introduced, which takes precision and accuracy into account (it may
say, for example, that two quantities are equal if they are equal within the precision of the most
precise).

Note that physical quantities themselves are not uncertain—it is our knowledge of them that is uncer-
tain. Note also that this uncertainty is present even before we try to represent the quantity as a PQE
in any computer or on any piece of paper. Further degradation occurs when we try to do those things;
it is discussed in Section 34.6.

See [Ref which Dan will find] for a more complete discussion of precision and accuracy.

In general, any finite representation of a number actually specifies a range of values. According to
common rounding rules, the decimal representation “3” means “somewhere in [2.5, 3.5).” The more
precise the representation of a number is, the narrower is the band of numbers it specifies. Low preci-
sion thus corresponds to wide bands of numbers. The numbers in measurements have less-than-infi-
nite precision for two reasons. First, they have finite representations (e.g., 64 bits). Second, they may
represent quantities that we know with only finite precision. For example, an architect may specify
lengths only to the nearest 1/16.” If a drawing says that a wall should be made 3-5/8” thick, it would

Scalar

Physical
Quantity

……MassLengthTime Length3 Length/Time2 N-position

Vector

…… Velocity

32

be an overspecification error to record the thickness as 3.6249999999.” Such a specification would give
rise to walls that were a satisfactory thickness, but which cost too much. Similarly, a geologist may use
dating techniques which are reliable only to the nearest 1000 years. It would be scientifically dishonest
to report that a rock was formed on “April 3, 3,000,025 B.C.”

Note that finite-precision numbers need not come from measuring anything. The converse is not true:
measurements always yield finite-precision numbers.

Precision is different from accuracy. We can say that π is 3.00000, for example. That specifies the
number to a precision of about 0.00001%, but its accuracy is only about 4.5%. Loss of accuracy can come
internally from cumulative arithmetic operations at finite precision, and externally from measurement
bias and errors of all sorts.

Although accuracy and precision are independent notions, a representation of a quantity can never be
more accurate than it is precise. Note also that accuracy is a property of measurements, while precision
is more a property of the representation of measurements (or of specifications).

3.7 Context

Knowledge about physical quantities exists in context: when an observation was made, by whom, using
what method and equipment, under what ambient conditions, etc. Which context is relevant is appli-
cation-dependent, but it may include the date/time, something to identify the measurement apparatus
and its level of calibration, the name of the operator, operator’s comments, ambient temperature, etc.
Note that this information is about the observation, not about the quantity observed.

Context also affects unobserved physical quantities: a specification for the length of a steel bar at a
given temperature, the expected height of a tree on a given date, etc.

As with precision and accuracy, context affects the manipulation of data about physical quantities:

• Arithmetic operations yield a new quantity, with different context. It is application-dependent
what the relevant items of context are, and how they are generated. For example, the sum of
lengths L1 and L2 might include in its context an ambient temperature which is the average of
the ambient temperatures of L1 and L2. The sum’s time stamp might be the time at which the
sum was computed.

• Logically, the assignment operator copies all context information. In practice, it is application-
dependent which components are copied.

• As with precision and accuracy, a new form of equality is introduced, which takes the relevant
context into account.1 Again, it is application-dependent which context is relevant.

>>ToDo 4: Is there any further discussion of context anywhere?

1. Logically, there is one for each subset of the components of context, which takes that subset into
account, or there is one form, parameterized by the subset which it takes into account. We speculate
that in practice the number of different subsets actually used will be manageable

33

II INTER-DIMENSION RELATIONSHIPS
There is only one relationship among dimensions in traditional dimensional analysis. Any dimension
can be expressed as a multiplicative combination of base dimensions.

We solve many of the problems described earlier by introducing new kinds of relationships among
dimensions.

>>ToDo 5: Need to complete all aspects of type relationships and graphs.

Notes...

How we know whether something is of a certain type should probably be pursued in detail in the
section on language stuff, but we need to say something about that here.

Implications for the type graph, canonical forms, compatibility, etc. really need to be worked out.

Need to work out the conditions under which dimensions comprise a “units family”, sharing a common
set of units. When can additional units be defined for a particular dimension in the family? Also need
to stop relying on units to infer the dimension of a quantity.

4 Independent (Orthogonal?) Dimensions: Dimensional Analysis
In traditional dimensional analysis, there is a finite set of base dimensions, such that all other dimen-
sions can be defined as multiplicative combinations (meaning multiplication or division) of the base
dimensions. The base dimensions are orthogonal, in the sense that no base dimension can be defined
as a multiplicative combination of other base dimensions.

The choice of base dimensions is somewhat arbitrary, and we don’t endorse any particular base set.
Base dimensions used in this document are for illustrative purposes. Any real computational support
will embody a particular set of base dimensions, probably with the ability to define new ones as well.
[But mention/reference standards.]

Any multiplicative combination of base dimensions in reduced form is a distinct dimension. [Is that in
dimensional analysis, or our extension?] Length2 and Length/Time are dimensions, being respec-
tively the same dimensions as Length3/Length and Length*Time/Time2. Any dimension can be
expressed in basic canonical form as a multiplicative combination of all base dimensions, i.e., a product
of all the base dimensions raised to powers which might be zero, positive, or negative. Acceleration has
the basic canonical form

Time-2 * Length1 * Mass0 * ...

If a fixed ordering of the base dimensions is established, then the basic signature of a dimension can
be expressed as a sequence of exponents of the base dimensions. [If there’s some other common term for
this, we can do a global replacement.] If Time and Length are the first dimensions in this sequence, then
the basic signature of Acceleration would be

-2 1 0 0 0 0 ...

Signatures are expressed more compactly in this document via the following conventions:

• Trailing zeros are elided.

• 0n denotes a string of n zeros.

• n denotes -n.

Thus 12053 denotes the signature 1 -2 0 0 0 0 0 3 0 0 0. The compact signature of Acceleration is 21.

34

Such signatures are simply an expository notation for expressing a sequence of powers of base dimen-
sions, and does not imply anything about representation of dimensions in an implementation or
programming language.

The names given to certain derived dimensions, such as “Area” or “Speed”, serve as aliases for these
dimensions. (A documentation convention for aliasing any dimension is described in Section 3.3.)In
algebraic operations, aliases and their canonical forms can be freely interchanged. Aliases are unique,
in the sense that each alias names exactly one dimension. (The situation will be somewhat different
for specialized dimensions [Section 8].) Dimensional analysis generally proceeds by replacing all
aliases with their unique canonical forms, and then performing algebraic reductions as though the
dimensions were variables.

In terms of signatures, the main computational rules of dimensional analysis are:

• The signature of a product of dimensions is the vector sum of the signatures of the terms.

• The signature of a quotient of dimensions is the vector difference of the signatures of the terms.

• Dimensions are compatible for purposes of addition, comparison, or assignment if their signa-
tures are the same.

[We may want to include or reference more detail, such as treatment of constants
and formation of the initial expression for dimensional analysis.]

5 Subtypes

[Add some introduction as to what subtype means, and how it differs from other type
relations.]

5.1 Unsigned and Signed Domains

The domains of unsigned (positive) and signed lengths have the following relationship:

• The unsigned (positive) lengths constitute a subset of the signed lengths.

• All operations applicable to signed lengths are applicable to the unsigned lengths, except that
the behavior of subtraction is redefined for unsigned lengths. x∼y is valid for any pair of signed
lengths. For unsigned lengths, if x<y then x∼y yields an error; otherwise x∼y is the same as for
signed lengths.

This relationship fits at least one of the definitions of “subtype”, and we can consider unsigned lengths
to be a subtype of the signed lengths.

With these types distinguished, it is clear that x←(3 feet − 4 feet) yields a valid result if x is a signed
length, but is an error if x is an unsigned length. (The subtraction could be valid, but the assignment
isn’t.)

Any domain which has total ordering and nil comes in such a signed and unsigned pair. [That’s not
quite accurate. Circular angles are closed under subtraction; negatives are not disjoint from posi-
tives. So, refine this observation.]

>>ToDo 6: Complete the stuff on subtypes, unsigned/signed domains.

Questions:

• Other sorts of subtypes?

• What impact on canonical form? Declarations? Literals? How do we know when something is of
which type?

35

5.2 Others?

>>ToDo 7: Are there other examples of subtypes?

6 Point and Interval Types

[Note that this concept applies to scalar dimensions, although vector dimensions
might have point components.]

Certain anomalies can be resolved by distinguishing between the point and interval forms of certain
dimensions. Thus 5° C and 41° F denote the same temperature point (how hot something is), while 5°
C and 9° F denote the same temperature interval (how much hotter one thing is than another). Simi-
larly, a heading of 90° is simply a single directional point — that’s where a ship is aimed — while an
angle of 90° denotes an interval, i.e., how much a ship might turn. The fundamental analogy is with
points on a line and the distances between pairs of points.

The intuition is hard to pin down precisely, but a point quantity has the sense of being a single thing,
while an interval quantity expresses a relationship between two things. For some dimensions, there is
no distinction. Thus the difference between two weights is still a weight, and the difference between
two lengths is still a length.

The units-based paradigm that we’ve been discussing applies to interval dimensions. Let’s say that any
domain with units-based measurement is an interval domain. [May need to reconsider that.]

>>ToDo 8: Refine the definition of interval domain.

A point domain has a total function Diff which maps a pair of points onto an element of an associated
interval domain: Diff(p1,p2)=i. Equality in the point domain is defined in terms of the null element of
the interval domain:

• Diff(p1,p2)=∅ if and only if p1=p2.

This difference is undirected (unsigned) i.e.,

• Diff(p1,p2)=Diff(p2,p1).

We can have Diff(p1,p2)=Diff(p1,p3) without p2=p3 if, for example, p1 is between p2 and p3.

Directed differences can be introduced if the associated interval domain is signed, so that

• Diff(p1,p2) = −Diff(p2,p1)

• Diff(p1,p2) ≠ Diff(p2,p1) for p1≠p2.

Given such a function, a useful “measurement” of points can be defined relative to some fixed origin
point. Let M be a function which returns some measurement of an interval. The measurement of a
point p relative to an origin point o can be defined as

Mo(p)=M(Diff(p,o)).

Such a measure is clearly dependent on the choice of origin o. [What more needs to be said about
directed and undirected stuff?] [Generalize: the result of a measurement is dependent on scale (unit
interval size) and origin.]

>>ToDo 9: Generalize the units concept to include origin?

An interval domain is in some sense a degenerate point domain which maps into itself and always
takes the natural zero as the measurement origin. Thus we can postulate (or define?) that every point
domain has an associated interval domain; an interval domain has itself as the associated interval

36

domain. Another way of saying this is that the result of a difference operation is in the associated
interval domain. Interval domains are closed under difference, while point domains are not.

Measurement in a point domain is defined indirectly via measurement in its associated interval
domain. Since the measurements are so expressed, it follows that the units for the point domain are
“inherited” from the interval domain.

[More examples!]

[It doesn’t seem possible, based on these definitions, for a point domain to have any
unique units of its own. However, it might have unique instance representations of
its own, such as the compass points. Interesting observation: N, E, NNE, etc. are not
“measurements” but representations of specific quantities. Is that also true of letter
grades? Stop and think: is this different from measurement, or not?]

>>ToDo 10: Do point dimensions have units? Are they really measurements?

[The underlying line and point metaphor leads naturally to thinking about location, but that’s only in
one-dimensional space. Say something about how this extends to other notions of location, which would
get us involved with vector dimensions.]

[Discuss the nature of the relationship between point and interval dimensions. It’s
hard to justify a subtype relationship among point and interval domains, even
though they share such things as units. Their populations really are different things.]

>>ToDo 11: Clarify the nature of the relationship between point and interval dimensions.

Stephanie’s question: If point “dimensions” are not PQs in the sense as defined in
Measurement Fundamentals, what are they? Are they siblings of PQ?

Proposal: split PQ into point and interval PQs as follows:

6.1 (Old Material)

>>ToDo 12: Check relevance of this other old material.

One category of physical quantity is closely related to the kinds of quantity we discuss in this paper—
counts of some unit along a dimension—but is not itself such a quantity. Dates, spatial locations,
computer memory addresses, and headings are examples of this category: the location of Palo Alto,
California isn’t a length, and it doesn’t make sense to ask how “big” it is. We call dimensions of this
sort point dimensions. The distinction between point dimensions an other dimensions is confusing
because headings are often measured in degrees clockwise from North, memory addresses are often
described by a count of bytes from location 0, dates are often described by time intervals from an
(implied) origin, and points in space are often described by their distance from an (implied) origin. But
to say that Palo Alto is “at” 37° 26’ 31” North, 122° 08’ 31” West is no different from saying that it’s 44
miles south of San Francisco—both describe a related distance, but do not “measure” the location itself.
This characterization is consistent with [1], which treats points and intervals as distinct dimensions.

Elements of point dimensions are sometimes referred to by names, rather than described by a related
magnitude. Points in space are often named by a city or geographical feature; dates are sometimes

Physical
Quantity

PointPQ IntervalPQ

37

known by the name of the current monarch or some important event; and headings are sometimes
named with a combination of the names of the compass points.

But when elements of a point dimension are described by the measure of some physical quantity, the
quantity always belongs to a related dimension. Locations in space are described by intervals in space
(i.e., lengths), memory addresses are described by numbers of bytes, dates are described by intervals
in time, headings by plane angles, etc. We call this related dimension an interval dimension. The touch-
stone for whether a dimension is of the “point” or “interval” type seems to be whether it is closed under
subtraction.1 If X and Y are the same kind of thing (belong to the same dimension), but X-Y is a
different kind of thing, then X and Y belong to a point dimension and X-Y belongs to the related
interval dimension.

There can be more than one interval dimension related to a given point dimension. For example, points
on the earth’s surface are sometimes described by their distance from an origin along a path (usually
a straight line), and sometimes by their angular offset from the Equator and the International Date
Line. Is the converse also true?

Special compatibility rules apply to point dimensions and their related interval dimensions. Let P be
a member of the point dimension, I be a member of the related interval dimension, and U be a number.
Then:

• P + P is undefined

• P + I → P

• I + I → I

• P - P → I

• P - I → P

• I - P is undefined

• I - I → I

• U ± I is undefined

• U × P is undefined

• U × I → I

A system which supports points and intervals needs to know which dimensions to treat this way. At a
very high level of support, it could allow users to make their own specifications.

Some anomalies are worth pointing out.

• Most point quantities are expressed in the dimension of their related interval dimension: loca-
tions as Distance or Angle, headings as Angle, temperature points (discussed below) as Temper-
ature interval, etc. Dates are an exception: although the expression “January 6, 1914” contains
a number of years since an implied origin, it is not generally taken to mean 699,095 days. It is
arguable whether the expression “5 million years B.C.” is a negative or positive quantity.

• The interval dimensions Length, Time and Angle all measure a relation between two quantities,
rather than a property of one quantity. Length measures an interval between two points; Time
measures a duration between two points, and Angle measures a relation between two lines (or
lengths). Any description of the property measured by these dimensions will name two points.
Temperature is different. It is an interval dimension, but it measures a property of single quan-
tities.

1. Actually, whether it is closed under the ∆ operator mentioned in Section 11.1.7.

38

• Physics offers no natural origin for measuring headings, dates or spatial locations (North, the
birth of Christ, and Greenwich all come from modern, human considerations). Temperature, on
the other hand, has a physical zero (a “nil” value). We thus have several temperature scales, one
with zero measurement corresponding to nil, and the others with zero measurement corre-
sponding to human-sensible values.

• We are not sure how to treat the temperature dimension. On the one hand, temperature points
and temperature intervals are different things (careful use even gives them different names:
“degrees Celsius” and “Celsius degrees”). On the other hand, while Length measures a relation
between two things, and duration measures a relation between two things, temperature
measures a property of one thing. While there is no origin of space or beginning of time, there is
an absolute zero temperature. For temperature, therefore, there is a choice of origin which gives
an isomorphism between points and intervals. It is therefore at least unambiguous, if not mean-
ingful, to compute the sum of two temperature points, to calculate half the temperature in San
Francisco today, etc. One can construct arguments both for and against having a system do this
without complaint. This area needs further work.

6.2 Temperature; Zero-Origin Units

>>ToDo 13: Does this treatment of temperature make sense? Consistent with our other
treatments?

Temperature behaves somewhat like a point domain, yet it has a natural zero. We can devise an inter-
esting analogy with weights. If many things in our experience weigh 100 pounds or more, we might
have another unit called “phounds”, expressing the number of pounds above or below 100. Something
weightless is -100 phounds, while a big sack of potatoes might weigh 0 phounds.

Two things weighing 1 phound each weigh 102 phounds together. If x=1 phound, then 2x=102 phounds.
Sounds like temperature.

[But how do differences behave?]

[Maybe gauge pressure, being relative to atmospheric pressure, is another analo-
gous case.]

We could generalize the notion of units and say that a unit expresses both a scale and an origin, with
the origin often but not always coinciding with a natural zero. Arithmetic is only valid with units based
on a natural zero. Expressions with other units must first be mapped to a zero-origin unit, if possible.
This formulation accounts for the polynomial form for temperature conversions, since both scale and
origin might have to be transformed.

Conclusion: temperature is an interval domain, but its popular units are not zero-origin.

7 Siblings

7.1 The Family of Angles

[To be completed. The whole story on angles may involve some combination of
siblings and specializations. On the other hand, the whole concept of siblings might
break down on more careful examination.]

>>ToDo 14: What does the sibling relationship really mean?

>>ToDo 15: Sort out the structure of the family of angle dimensions.

[Also at Section 7.1.5.]

39

Angle dimensions may turn out to have a rather complex structure. One thing they all have in common
is units of degrees. Most also have units of radians, but that probably does not apply to compass head-
ings. On the other hand, compass points probably don’t apply to anything but compass headings.

How do compass headings fit in if they are a point dimension while all the others are interval dimen-
sions?

How do these relate to each other? What sorts of inheritance go on? [There is some discussion at Section
7.1.5.]

Do the time dimensions behave similarly, or do they introduce something new?

7.1.1 Rotational Angles

Rotational angles measure how much something has been rotated. Turning something full circle is
different from not turning it at all, and doing that twice yields something different, and larger, again.
One good example measures how many times a screw is turned.

This is a very nicely behaved domain, exactly isomorphic with lengths, even to the extent of having
signed and unsigned variants.

To begin a running example, in rotational angles we have:

• 360°>180°>0°

• 280°+280°=560°

A curious observation: the notion of a circle has little significance in this domain. There’s nothing very
special about 360°. A rotation of 360° sort of gets you back where you started, but not exactly. However,
since it will be useful later, we will use Θ to denote a rotational angle corresponding to one full revolu-
tion, while η will denote the nil angle (0°). Other angles will often be denoted by their measurement in
degrees.

7.1.2 Modulo Domains: Circular Angles

This is the familiar circular measure in which all angles lie between 0° and 360° (η and Θ).

Circular angles constitute a subtype of the rotational angles, containing just the instances η≤x<Θ. The
significance of that half-open interval must be clearly understood. The rotational angle Θ is the least
upper bound for all the circular angles, but it is not itself a circular angle. For circular angles, “360°”
is just a synonym for “0°”, and is very different from the rotational angle denoted by “360°”.

Circular angles inherit units, equality, and order from rotational angles, but addition and subtraction
have to be redefined.

The combining operation is slightly different for circular angles, since 359°#1°=0°. It’s easiest (and
perhaps unavoidable) to define the behavior of # for circular angles in terms of its behavior for rota-
tional angles. Note that we want to talk about angles, not numbers. We want to justify the adoption of
modulo arithmetic, not assume it. Inevitably, the description will sound much the same.

To combine two circular angles, first combine them with the rotational # operator (it is applicable, since
the angles exist in both domains). If the result is larger than Θ, subtract Θ (in the rotational domain).
The result will be in the range η≤x<Θ, hence is the desired circular angle.

Exercise: verify that circular # is associative and commutative, without resorting to modulo arithmetic.

It would seem trivial to claim now that we redefine addition as modulo addition to capture the behavior
of circular #. If x1=k1u and x2=k2u for some unit angle u, and Θ=k3u, then

x1#x2=(k1+ku)\k3 u.

40

That is, the measure of the combination of two angles is the sum of their measures modulo the measure
of a full circle.

Unfortunately, we haven’t quite justified the notation k1u.

What can we say about multiplication, i.e., rx for some real number r and angle x? It’s tricky. The first
step, unique definition of kx for any non-negative integer k, seems to be all right. But then we notice
that we might have k1x=k2x with k1≠k2, if k1−k2=nΘ for some integer n. Thus, for a given pair of angles
x1 and x2, there can be many pairs of integers ki1 and ki2 such that ki1x1=ki2x2, with the ratios ki2/ki1

being all distinct. Hence the rational number r in x1=rx2 is not uniquely determined. Hence we don’t
have a foundation for units-based measurement, unless we find a paradigm for selecting a unique r.

For example, if x1=60° and x2=90°, we have 3x1=2x2, 9x1=2x2, 3x1=6x2, and so on. If we don’t find some
way to prevent it, we could infer that x1=(2/3)x2=(2/9)x2=(6/3)x2, etc. What exactly makes us believe
that 2/3 is the correct ratio? It’s neither the minimum nor the maximum ratio. But it does seem to be
the one with the smallest numerator and the smallest denominator. Is that a provably consistent and
correct algorithm?

Here’s the outline of a proposed definition, with key steps remaining unjustified:

• For a given pair of circular angles x1, x2 with x2>η, let {ki1} and {ki2} be sets of positive integers
such that ki1x1=ki2x2. If either set is empty, quit.

• Let k*1 and k*2 be the minimum values in each set.

[It’s evident that these minima exist, isn’t it?]

• Define k*2/k*1 to be the ratio of x1 to x2. If r=k*2/k*1, we can write x1=rx2.

Pitfalls:

– How do we know that k*1x1=k*2x2? k*1 and k*2 might have come from different equations.

– Can we satisfy ourselves that k*2/k*1 is the intuitively correct ratio?

Eureka! There’s a simple solution to that problem! The previous exercise has been an extremely valu-
able demonstration of the care required to avoid false assumptions about arithmetic in measurement
domains. However, it takes the wrong approach for our present purposes. [So, let’s keep that other
material somewhere as a demonstration.]

An elegant solution is based on a trivially simple intuition: we say that x1=rx2 as circular angles if and
only if x1=rx2 as rotational angles, for any real number r. That’s all it takes.

Consequently, rx is a defined and unique circular angle for any circular angle x and any real number r.

(Observe that we depend in several places on the circular angles being an actual subset of the rota-
tional angles. That’s what allows us to compute with circular angles as though they were rotational
angles whenever we need to.)

[Still need to justify the fact that we recognize 400 ° as denoting the circular angle
also denoted by 40 °.]

Subtraction also turns out to have interesting properties. Circular angles are closed under subtraction.
That is, for any x and y, there exists a z such that x#z=y, hence x~y=z. This means that the negative
circular angles are the same as the positive circular angles, and there is no need to distinguish between
unsigned and signed circular angles.

Exercise: demonstrate uniqueness of x~y. Don’t get confused by the observation that 60°#90°=150° and
60°#450°=150°, suggesting that 150°~60° is non-unique. Once again, 90° and 450° are not different
circular angles, but different notations for the same angle. Hence the difference is in fact unique.

41

One last curiosity: as with modulo addition, the monotonic nature of combination is lost. That is, we
can have x#y<x, even if x>η and y>η. In fact, we could have k1x<k2x though k1>k2 (e.g., 2*200<1*200).
This demonstrates that ordering has to be postulated independently, and can’t be inferred from the
combining operation.

To continue the example, in circular angles we have:

• 180°>0°=360°

• 280°+280°=200°

7.1.3 Interior Angles

Here’s a strange though familiar domain, in which no angle seems to be larger than 180°.

Did you ever see two fences meet at an angle of 270°? Did you ever see a 270° angle bracket? Would
you ever describe two streets as intersecting at 270°? These are all generally considered the same as
90°.

Would you ever say that two fences, or two streets, intersected at 180°? Is there such a thing as a 180°
angle bracket?

Do you doubt that these angles are measured, or added, or compared? Try discussing this at your
neighborhood hardware store.

A similar notion of angle seems to underly the assertion that the base angles of an isosceles triangle
are equal.

As long as everything is between 0° and 180°, things behave quite nicely. But once we cross 180°, look
out! We have 180°+x=180°−x, even with x≠0. We have 170°+20°=170°. As we accumulate 1° angles the
results get larger and larger — until we get to 180°, after which the angles get smaller and smaller
while we keep accumulating in the same direction.

In effect, the combinatorial operation # includes flipping the angle around if it exceeds 180°.

>>ToDo 16: Complete the investigation of interior angles.

Exercise: which axioms are failing here? Unique coefficients? Associativity? Unique nil? Distinguish
nil from an annihilator.

[Add uniqueness of nil as an axiom? Without unique nil we could have problems with negatives.]

(Should check whether # is associative in this domain. Can’t tell for sure. Should observe that associa-
tivity is verifiable in circular angles and other modulo domains — if there are any.)

7.1.4 Compass Headings

Notes:

We could treat compass headings as being isomorphic to circular angles, with the addition of letter
notation for certain angles. But one could also make the case for compass headings being a point
domain, with arithmetic and order being inapplicable. This seems to be the natural semantics of
compass headings.

Should we adopt some other name for these, such as bearings or direction?

>>ToDo 17: Complete the investigation of compass headings.

7.1.5 Summary of Angles

As before, the reason for distinguishing such types is to declare differences in intended behaviors. The
ambivalent intent of certain operations can be resolved by defining distinct types, each corresponding

42

to a different behavior of the operation. Thus op(x) behaves one way if x is of one type, and another way
if another type.

An old message to be re-emphasized one more time again: don’t let the numbers fool you! In circular
angles, 360° is not bigger than 359°. 360° and 0° are just different names for the same angle, which is
less than all other angles in circular measure. Circular measure is a bounded domain. All the circular
angles are very nicely totally ordered, even the ones very close to that upper bound. There is a least
upper bound, but it’s not in the domain.

In circular angles, 560° is just another name for the angle called 200°. In fence angles, 280° is just
another name for the angle called 100°, while 560° and 200° are both synonymous with 160°.

Speculation regarding type structure: Circular and interior angles could be subtypes of Rotational.
Heading probably can’t, since it doesn’t inherit certain operations. Anyhow, Heading is a point type
while the others are interval types. If Heading and Rotational are siblings, it would be nice to have a
common supertype from which to inherit things like units. [Problem?]

[We need more wrap-up here. What are the general principles? To what other exam-
ples would they apply?]

7.2 Other Examples

>>ToDo 18: Are there other examples of sibling dimensions?

8 Specialization

>>ToDo 19: Do we have consensus on this treatment of specialization?

8.1 Purpose

Work and torque both have the same canonical representation—Force × Length—but they aren’t the
same thing. Work is a force applied along its direction of travel, while torque is a force applied at some
distance from a center of rotation, such as a force applied to the handle of a wrench. Thus work and
torque are partially equivalent, in the sense that they have the same canonical representation and
hence appear equivalent under dimensional analysis, but they are not simply substitutable for one
another. In a sense work and torque are different “specializations” of the dimension Force × Length.

>>ToDo 20: Is torque a vector?

[One can argue that Torque is a vector, whereas Work is a scalar, and that distin-
guishes them. This discussion still applies to the magnitude of the torque vector.]

Other examples: the productivity of a lumber mill or licorice factory might be expressed in feet per
hour, but this is not the same thing as Speed. Fuel consumption in gallons per mile is Volume/Length,
but is not the same thing as Area. Paint coverage in gallons/square foot is Volume/Area, but is not the
same thing as Length. In some contexts it is convenient to treat Length, Width, and Height as different
dimensions. In some contexts, Height2 is not compatible with Area.

Rotational Circular Interior Heading

360°>180°>0° 180°>0°=360° 360°=180°=0° 360°=0°≠ 180°
x>y: error

280°+280°=560° 280°+280°=200° 280°+280°=160° 280°+280°: error

43

Similar issues arise with “dimensionless” dimensions. For purposes of dimensional analysis, Angle is
equivalent to Length/Length [1]. Certain concentrations might be expressed as Weight/Weight, or as
Volume/Volume. The accuracy of a timepiece might be expressed in seconds/year, i.e., Time/Time. All
of these have a dimensionless canonical form, and are thus equivalent under the textbook treatment
of dimensions.

However, one may wish for a system supporting dimensions to treat them as distinct. In the same way
that a good CAD system can raise an error if two different signals are applied to the same wire (even
though both are of type “signal”), a system supporting dimensions can raise an error if a user tries to
assign a variable of type work to a variable of type torque, or compare a lumber mill’s output to a
runner’s speed, or add a clock’s error to the concentration of a sugar solution.

8.2 The Specialization Relationship

Specialized dimensions enable the kinds of distinction mentioned above. A specialized dimension is
defined in terms of an existing dimension, which is then the parent of the specialized dimension.
Specializations of the same parent are siblings. [Watch our for conflicting usage in Section 7.] For
example:

[Might later change the example in the figure. Could show a real subtype relation-
ship, such as positive (unsigned) lengths under signed lengths. The contrast
between subtype and specialization could then be made clearer. Incidentally, this
also suggests more motivations for unsigned lengths as a distinct type: might not
want things like area, volume, speed, etc., expressed in terms of signed lengths.]

Specialized dimensions are themselves dimensions, and may be further specialized. However special-
izations of a parent dimension D are not subtypes of D. Rather, they behave like what the relational
algebra calls “domains” [12, 14]. Briefly, a domain defined over D inherits all the properties of D, but
doesn’t obey the “is-a D” relation, so its elements aren’t automatically promoted to elements of D. This
behavior is what makes Width and Height incommensurate in the example above (or Energy vs.
Torque, Length/Length vs. Time/Time, etc.).

The essential difference between specialization and subtyping can be described in terms of inheritance.
The intent is to prevent a width from being added to a height. However, if Width and Height were

Physical Quantity

Length

Height

Subtype

Specialization

Width

44

subtypes of Length, then the two terms, being also instances of Length, could still be added as lengths.
Making Width and Height specializations rather than subtypes prevents this.

A specialized dimension might have multiple parents. Area might be defined as a specialization of
Longness*Width and also of Longness*Height. This introduces some problems, discussed in Section
8.4. Until then, we assume each specialization has a single parent.

[“Length” has been adopted as the standard term for the base dimension, where we might sometimes
find “distance” more convenient. We therefore coin “longness” as the third counterpart to width and
height. Thus, longness, width, and height are three sorts of lengths.]

A specialized dimension inherits the units and unit conversions of its parent. Additional units can be
defined especially for the specialization, such as mph for Speed or “hands” for Height (often used for
the height of horses).

The specialization relationship is also significant in managing compatibility (below).

8.3 Compatibility Levels

Specialized dimensions prevent users from making certain mistakes, such as adding a work value to a
torque value. This reflects a protective philosophy of language design, in contrast to a permissive
philosophy which assumes the user knows what he is doing and shouldn’t be impeded by the system.
Designers of any real computational support system will have to decide where they stand on the protec-
tive vs. permissive spectrum.

There is a spectrum of possible compatibility enforcement strategies.

8.3.1 Strictest Enforcement

The strictest level of enforcement is simple and consistent, but quite inconvenient. Specialized dimen-
sions are considered just as distinct as base dimensions. Thus Speed and Linear Productivity, both
defined as specializations of Length/Time, are incompatible with each other. Unfortunately, they are
both also incompatible with the dimension Length/Time. The following operations will all fail:

xSpeed ← xLength / xTime
xLength ← xSpeed *xTime
xSpeed + xLength / xTime
xSpeed = xLength / xTime

(Our notational convention [Section 3.3]: a variable named xA.B’C has been declared to be of dimen-
sional type A*B/C, and a function or procedure named fA.B’C yields a result of dimensional type A*B/
C.)

The quotient xLength/xTime is of type Length/Time, not Speed, which makes the first assignment
above illegal.

The apparently desired results can be achieved if the user defines and applies the appropriate func-
tions:

xSpeed ← MakeSpeed(xLength, xTime)
xLength ← MakeL’T(xSpeed) * xTime
MakeL’T(xSpeed) + xLength / xTime
xSpeed + MakeSpeed(xLength, xTime)

The MakeSpeed function would, for example, take two arguments of type Length and Time and return
a result of type Speed. [Might want to say a little more about how that could be done.]

45

8.3.2 Weakest Enforcement: Aliasing

At the other extreme, there would be no enforcement, yielding little more than aliasing. In effect, each
specialization is just an alias for its parent. Two specialized dimensions are compatible if they have a
common parent, which serves as their common alias. This would even allow direct assignment of one
specialization to another specialization of the same parent (sibling assignment), essentially negating
the value of specialization.

8.3.3 Parent/Child Assignment

One intermediate strategy would allow assignment between a specialization and its parent, in either
direction. Thus, if Width and Height are specializations of Length, then the following would be
permitted:

xLength ← xHeight
xHeight ← xLength
xLength ← xWidth
xWidth ← xLength

However, the basic intent of specialization, which in this case is to force a distinction between Width
and Height, is still enforced by disallowing direct assignments of the form

xWidth ← xHeight
xHeight ← xWidth

This approach does suffer from a transitivity anomaly. The sequence

xLength ← xHeight
xWidth ← xLength

is valid, even though it is logically equivalent to the invalid assignment xWidth ← xHeight. This can
be rationalized by arguing that the above two operations represent a deliberate promotion or demotion
by the user. Promoting a height to a length is a deliberate loss of information, since we no longer know
which sort of length it is. Conversely, demoting a length to a height is a deliberate addition of informa-
tion, like a coercion. Each of those operations done separately can be seen as making sense. However,
a direct assignment of a height to a width still has the appearance of an error.

Designers of computational support systems will have to judge the merits of such a rationalization.

8.3.4 Multiplicative Promotion

Specialization often seems unnecessarily constraining in terms involving multiplication or division.
This can be relaxed by allowing a specialized dimension S to be replaced by its parent in expressions
of the form S*X, S/X, or X/S, if necessary for establishing compatibility.

Thus, in the dimensional expression Speed*Time, Speed could be replaced by Length/Time in order to
allow cancellation, leaving Length as the result. Similarly, the expression Length/Speed could be
changed to Length/(Length/Time), allowing the result to be Time.

Such substitutions (promotions) are optional, and should only be done as needed. Thus the expression
(Speed*Time)/Time should yield Speed, not Length/Time as would occur if Speed was replaced prema-
turely. Optional promotions raise the possibility of different outcomes. The precedence of promotion
relative to other operators has to be managed. Consider the dimensional expression (Speed*Time +
Speed*Time)/Time. If the addition is done first, the result would be Speed, while if substitution were
done first the result would be Length/Time. Further investigation is needed on this point.

8.3.5 Additive Promotion

This option almost vitiates the effect of specialization. Two specializations would be considered
compatible for addition, subtraction, or comparison if they have a common parent. The result of addi-

46

tion or subtraction would have the type of the least common parent. Thus a height could be added to,
subtracted from, or compared with a width. The result of addition or subtraction would be of type
Length.

A weak form of specialization could be realized by allowing additive promotion while still excluding
direct sibling assignment. That is, a height still could not be assigned directly to a width.

8.3.6 Combinations

Other variants could also be invented. The ones described above could be grouped into the following
combinations, which have the sense of decreasing levels of strict enforcement:

Level 5 represents the strictest enforcement of specialization, while Level 1 is the weakest, equivalent
to aliasing.

Other combinations are also possible, such as allowing multiplicative promotion without parent/child
assignment, or separating comparison from addition and subtraction. Designers of computational
support systems might define other configurations than these, they might choose one of these enforce-
ment levels, or they might offer their users a choice of enforcement levels. User options might be global
in scope, or they might be declared for different specializations, e.g., Speed enforced at Level 3 but
Torque enforced at Level 2.

Whatever level of specialization is supported, it can be used in combination with aliasing. Users may
choose to favor one sibling by defining it as an alias, with the others being specializations. Thus Speed
might be defined as an alias of Length/Time, while Linear Productivity is defined as a specialization.
Then Speed would conveniently be freely interchangeable with Length/Time in any context, while
Linear Productivity would be protected by the specialization mechanisms. For example, Speed could
not be assigned to Linear Productivity above Level 1, and they could not be added, subtracted, or
compared above Level 2. Such an approach is viable to the extent that asymmetrically favoring one
sibling over the others is desirable.

>>ToDo 21: Discuss the possibility and consequences of changing an alias to a specializa-
tion.

An interesting example, assuming that Area is defined as a specialization of Height*Width:

If (xHeight*xWidth)>xArea then xHeight ← xArea/xWidth.

This does not work at Level 3, which would allow the assignment, but not the comparison. It does work
at Level 1 or 2.

Instead of treating violations as error conditions, another possibility would be to use these rules simply
for informational feedback warnings, identifying points at which expressions are suspect and in need
of review.

Level Parent/Child
Assignment

Multiplicative
Promotion

Additive
Promotion

Sibling
Assignment

5 No No No No

4 Yes No No No

3 Yes Yes No No

2 Yes Yes Yes No

1 Yes Yes Yes Yes

47

8.4 Multiple Parentage

Suppose we had Longness, Height and Width as three specializations of Length. We might choose to
define Area as a specialization of Longness*Height and also of Longness*Width, but not of
Height*Width. Such multiple parentage creates a number of problems.

When any sort of promotion is supported [Section 8.3], multiple parents are available to be substituted.
Thus, for example, Area/Longness could turn out to be either Height or Width. Some contexts provide
a criterion for selecting one of these, e.g., if Area/Longness was being added to either Height or Width.
However, there are also ambiguous cases. Suppose there were another dimension B which was a
specialization of Time*Height and also Time*Width. Then the expression

xArea/xLongness + xB/xTime

would be ambiguous, yielding either Height or Width.

There are several possible approaches to such ambiguity:

• The sledgehammer: disallow multiple inheritance because of this problem.

• Legislate that such ambiguous expressions are invalid.

• Introduce some notion of “type sets”, trying to see whether the ambiguities are resolved by the
end of the expression evaluation. The type of a sum might be the intersection of the types of its
terms. Thus, the result of that example would have type {Width,Height}; if it was then added to
xWidth, the ambiguity would be resolved.

Further investigation is needed into the desirability and feasibility of multiple parentage.

8.5 Multi-Level Specializations

[Illustrate. Can we find some interesting ones which don’t descend from Unary?
Area under Width and Height? Volume specialized from Area? Simpler examples
based on single parentage?]

>>ToDo 22: Examples of multi-parent specialization?

8.6 The Unary Dimension and its Specializations

8.6.1 Purpose

All multiplicative combinations of base dimensions, algebraically reduced, constitute distinct dimen-
sions.

The unary dimension collects the set of dimensions that appear to be dimensionless, e.g., angle (equiv-
alent to Length/Length), certain concentrations such as Volume/Volume, clock rate error (Time/Time),
and so on. As the examples illustrate, these all take the form of ratios reducible to 1. While counts
appear to be another category of “dimensionless” dimensions, we don’t see a need to include them
among the unaries for now.

The unary dimension is the product of no dimensions, i.e., the product of all base and specialized
dimensions to the zero power. Hence its signature is 0. It cannot itself be a base dimension; otherwise
its signature would have a 1 in it. Unary is the result type of an expression when all the dimensions
cancel out.

8.6.2 Implicit Specializations

The “first tier” of specializations of Unary is an implicitly-defined ordered infinite set corresponding to
unit ratios of base dimensions. For example, the first of these might correspond to Time/Time. While
this dimension “corresponds” to Time/Time, it is not the same thing, so we use Time/Time to denote
this specialization of Unary. One important distinction is that the specializations are not algebraically

48

reduced. Thus, while Time/Time and Time2/Time2 would be the same thing, Time/Time and Time2/
Time2 are not. In fact, Time/Time is the same as Length/Length, but Time/Time and Length/Length
are not — which is precisely why we introduced unaries in the first place.

8.6.3 Explicit Specialization

>>ToDo 23: Notes. To be completed...

Angle would be a specialization of Length/Length. And that might expand out into a whole complex of
various flavors of angles.

Volume/Volume leads to some interesting things:

• It is a specialization of Unary.

• It seems to involve a specialization (Volume).

• It could have two further sub-specializations: one for solute/solution, one for solute/solvent.

• Those two sub-specializations are members of the quasi-dimension Concentration.

What a graph!!!

8.6.4 Signatures

[Say more about the concepts before diving into notation. Some of this refers
forward to Section 8.7.]

For the purpose of defining signatures, we observe that these implicitly defined unaries constitute an
orderable infinite set. We assume some arbitrary ordering. We have three kinds of dimensions which
require positions in a signature:

• Base dimensions (finite number = b).

• Explicit specializations, including explicit specializations under Unary (finite number = s).

• Implicit specializations of Unary (infinite).

The infinite set needs to come last in the signature notation. Hence signatures are constructed as
follows:

• The first b positions represent base dimensions.

• The next s positions represent explicit specializations.

• Remaining positions represent the implicit specializations of Unary.

Thus, for example, Time/Time (the first implicit specialization of Unary) has signature 0b+s1.

This is clearly only useful as an expository notation. Signatures of all dimensions are subject to change
as new base or specialized dimensions are introduced.

8.6.5 Units

The importance of these implicitly defined unaries is that they impart units to their specializations.
Thus, while Clock Rate Error is apparently “dimensionless”, it has units of the form Time-unit/Time-
unit (e.g., seconds/year) but not of the form Length-unit/Length-unit. Similarly, Strain has units of the
form Length-unit/Length-unit (e.g., inches/mile). These definitions are obtained by specifying Clock
Rate Error as a specialization of Time/Time and Strain as a specialization of Length/Length.

As with other specializations, additional units can be introduced for the specialization, such as degrees
for angles.

49

There is also an anomalous “unitless” form when the numerator and denominator are both expressed
in the same units — in which case it is simply a ratio, independent of any particular units. Thus, for
example, a Clock Rate Error of 0.01 means 1 second/100 seconds or 1 hour/100 hours or ...

>>ToDo 24: PQE’s for dimensionless and composite dimensions?

[Does this mean we have to allow “unitless” PQE’s? How do we know the dimension
involved? Actually, the whole subject of PQE’s for composite dimensions remains
to be clarified.]

>>ToDo 25: Is percent a unit?

[We also raised the question of whether “percent” is a unit, or simply a different
notation for rational numbers.]

8.7 Specialized Canonical Form

Specialized canonical form extends techniques of traditional dimensional analysis [Section 4] to deal
with specialized dimensions.

For purposes of canonical form, specializations are treated much like base dimensions. The canonical
form of Speed is simply Speed, not Length/Time. Thus each specialization gets a distinct new signa-
ture, not a combination of previously defined signatures (Figure 1). Our shorthand for signatures is
augmented with the construct 0b representing b zeroes, where b is the number of base dimensions. At
the moment b=3 since we have three base dimensions defined (in Figure 1). Longness, the first special-
ized dimension, therefore has a signature of 0b1, i.e., 0001.

For the sake of illustration, we have also introduced Distance (in the sense of distance travelled) as a
distinct specialization of Length. It will be used in later examples.

>>ToDo 26: Should we mention alternate encoding of signature?

[Mention the option of encoding the parent in the prefix, under single inheritance.
Expedites checking, since specializations can never be compatible unless they have
a common parent.]

8.8 Other Experiments With Specialization

8.8.1 Another Approach to Work and Torque

Suppose we took advantage of Distance as a specialization of Length, in the sense of distance travelled.

To begin with, Speed and Acceleration should then really be defined as specializations of Distance/
Time and Distance/Time2. (Here I do really mean “Distance”, the specialization.)

The first mind-blower: where do multiplicative combinations of base and/or specialized dimensions fit
in the type graph (Figure 1)? That may be trivial, once I get used to it, but I’m not so sure just yet.

Force should then be defined as a specialization of Mass*Acceleration, not just ML/T2.

Since Work has the sense of a force being applied to a body in order to move the body a certain distance,
it would naturally be defined as (a specialization of?) Force*Distance.

Torque has the sense of a force being applied statically around a point of rotation, at a radius of a given
Longness(!). Therefore Torque could sneakily be defined as (a specialization of?) Force*Longness.

The good news is that we’ve now made Work and Torque incompatible by defining them in terms of
different specializations of Length.

50

The bad news is that I don’t quite see how to convert Torque to Work by multiplying by an angle. It is
the intuitive transform: maintaining a certain torque while moving through a certain angle of rotation
corresponds to a certain amount of work. It seems to need a definition of Rotational Angle as Distance/
Longness. If we could tolerate that, then we would get a nice formulation:

Torque * RotAngle = Work

Force*Longness * Distance/Longness = Force*Distance.

 Time: 1

 Length2: 02
 Area: 0b051

 FuelCons: 0b061 (e.g., gals/mile)

 Mass: 001

 Length: 01

 Longness: 0b1

 Width: 0b01

 Height: 0b001

 Distance: 0b031

 Length3: 03
 Volume: 0b071

 Length/Time: 11
 Speed: 0b081

 LinProd: 0b091

 Length/Time2: 21
 Accel: 0b0101

 Mass*Length2/Time2: 221
 Work: 0b0111

 Torque: 0b0121

 Unary: 0

Time/Time: 0b+s1

Length/Length: 0b+s01

 Clock Rate Error: 0b0131

 Strain: 0b0141

 Angle(1): 0b0151

Figure 1.

 PaintCov: 0b041 (e.g., gals/ft2)

51

Is there any hope of something useful here?

Would it be too crazy to even introduce Radius as yet another specialization of Length, and use that
instead of Longness above? It does seem to capture the semantics involved in both Torque and Angle.

The down side, as always, comes from having to explicitly force Radius to be a Length when that’s what
you really want. Oh well, the trade-offs.

9 Generalization (Quasi-Dimensions)

>>ToDo 27: Possible application to currency conversion?

[New observation (5/17 wk): having to fix the conversion parameters in the current
context seems to bear some resemblance to fixing currency conversion rates.]

[Potentially another quasi-dimension in the travel example! “Travel segment” can be
expressed as either Time or Distance. Made compatible if a Speed parameter is fixed.
AAA maps do that. Also astronomy. Dwell on this analogy a bit longer. One set of
factors converts between units of a given dimension. Another set of factors converts
between member dimensions of a given quasi-dimension.]

In Section 8 we dealt with the case where many dimensions have one canonical representation. Here
we address the converse: one dimension having many canonical representations.

Consider the fact that concentrations can be expressed in Volume/Volume, Weight/Weight, and
Weight/ Volume. Concentration has some of the characteristics of a single dimension:

• It corresponds to the single semantic concept of relative amounts of two things.

• Concentrations of the same material may be expressed in different terms in different situations,
and it is natural to convert among these forms in much the same way as units conversion is done.

Yet concentration is not a single dimension in the traditional sense, since it corresponds to several
distinct canonical forms. We might call concentration a “quasi-dimension.” It is a single abstraction, or
generalization, of several distinct dimensions.

Many of the quasi-dimensions we have identified so far are based on the underlying quasi-dimension
of “Amount.” Amounts of things can be expressed in terms of Length (e.g., rope), Area (e.g., carpet),
Volume, or Mass. Amounts of medication are often expressed in the number of pills or drops. Some-
times (e.g., when counting populations) we leave off the thing being counted and just mention the
number. With “Amount” established, concentration can then be expressed as Amount/Amount. Other
such quasi-dimensions include Price (Money/Amount) and Dosage (Amount/ Time).

Other quasi-dimensions are not based on “amount.” For example, pressure can be measured in pounds/
square inch (Force/Area), or as millimeters of mercury (Length). Similarly, Length could be measured
in feet (a length unit), or in years (a time unit), assuming the speed of light. Both of these quasi-dimen-
sions (Pressure and Length) thus have more than one canonical representation. In the audio and radio
domains, time-domain signals and frequency-domain signal spectra are equivalent representations of
the same thing. They have representations of Amount/Second and Amount/Hz (or Amount/octave) and
are inter-convertible.

Rewrite the following for continuity and logical flow.

There are a few side issues, related to concentrations and similar quantities, which do not bear on the
subject of quasi-dimensions. Concentration is sometimes specified as solute/solvent and sometimes as
solute/solution. [See discussion in Section 8.6.3.] This is not the same issue as which dimension to
use to represent a particular concentration. It is more like the choice of unit (relative vs. absolute pres-
sure) or a detail in the choice of quantity measured (like inside diameter vs. outside diameter). We are

52

not sure which of these is the proper model for the distinction, but each is well-understood. We do not
discuss this distinction further, and instead focus on the dimensional issues. The density of solvent or
solute (which is needed for conversion) depends upon whether it is solid, liquid or gas. We do not worry
about that here, but assume that any mechanism for choosing the density of a material can choose the
density of the proper state of the material. When solutions are combined physically, the resulting
concentration may not be a simple function of the initial concentrations. We do not worry about the
physics or chemistry of combining solutions. We confine ourselves here to the relationship between
concentration and the canonical forms used to represent it.

Support for quasi-dimensions involves defining them, establishing their compatibility rules, and auto-
matically converting among compatible canonical forms.

9.1 General Approach

>>ToDo 28: To be completed. These are just notes.

The general approach has two main parts: defining convertibility graphs, and establishing their scope.

A convertibility graph for members of a quasi-dimension would have much the same characteristics as
the conversion graph for units of a given dimension. There has to be:

• Definition of which dimensions are members of the quasi-dimension.

• Specification of conversion factors (procedures?) between pairs of member dimensions. Some of
these are simple constant properties, such as the density of a substance. They might be more
complex.

• Verification of conversion paths between any two members.

• Tactical choices among various possible conversion strategies.

• Concerns about accuracy and precision in conversion.

Scope is a much harder new issue. Obviously the same graph doesn’t apply to all cases. In fact, the
same quasi-dimension would often have multiple convertibility graphs, e.g., for different substances.
It’s probably necessary to name these graphs.

Graphs might be dependent on other things than the substance involved. Some graphs might reflect
the assumption of sea-level atmospheric pressure, or of STP (Standard Temperature and Pressure), or
Earth’s gravity. Sometimes the “substance” might not be more specifically identified than that it is a
gas, since certain laws of physics are uniform for all gases.

The scoping problem has the usual generic form and options. The essential point is to establish which
convertibility graph, if any, is in effect at a particular moment. There is the usual range of solutions,
including:

• Globally fixed for all time. Not practical.

• Make it a property of the procedure/module/program.

• Explicit declarations in the user’s program to Begin and End a scope.

• Specify the appropriate conversion graph right with the expression.

• Figure out some way to know the substance involved from the data in the environment.

• Others?

9.2 Compatibility

Part of the meaning of a quasi-dimension is that it makes sense to convert quantities among its canon-
ical forms, where such conversion would not be legal otherwise. The methods for performing conver-

53

sions are application-dependent (see below), and must be provided by users or administrators. A
system has several choices for deciding on the legality of conversions.

• It can say that all conversions are legal (and thus require a method for every possible one when
a quasi-dimension is defined).

• It can say that the legal conversions are exactly those which it has been told how to do.

• It can specify the legal conversions algorithmically (e.g., Volume and Mass are interconvertible
only for temperatures at which water is a liquid).

These compatibility rules combine so as to add compatibility: when a dimension joins a quasi-dimen-
sion, it thereby becomes potentially compatible with more dimensions. It cannot thereby become
compatible with fewer of them.

>>ToDo 29: Compatibility question.

When defining a quasi-dimension, do we get to override any preexisting compati-
bility rules? For example, can we make any of the children incompatible with things
they used to be compatible with?

>>ToDo 30: What about compatibility of multiplicative combinations?

Is mass/vol*charge compatible with vol/vol*charge? By analogy with specialized
dimensions, they would lose their “quasi-ness.”

9.3 Converting Among Canonical Forms

Converting between different canonical forms often requires knowing some property of the substance
in question, such as the density of the solvent or solute. Such conversions are substance-dependent. In
some situations, a system can’t be expected to know the required information. In these cases it is
reasonable to require a user to describer explicit conversions. For example, to convert from a volume v
to a mass m, the user could write

mass ← vol × k grams/cc,

explicitly specifying the density of the substance.

In some situations automatic conversions are possible, but require an application-dependent conver-
sion. It is often appropriate to assume that the substance has properties similar to water. Alterna-
tively, in certain industrial settings there is only one substance involved in all of the data. Nurses are
routinely expected to translate dosages into drips/minute for intravenous solutions. For these situa-
tions, the user or administrator must provide either the appropriate conversion factor (assuming it is
multiplicative), or the entire conversion routine. Conversions can be either pairwise or a “star” config-
uration [Section 29.3.1]. Defaults may be provided for conversion factors [Section 24.3].

Other conversions are easy to do automatically, such as converting from miles/gallon to gallons/mile.

10 Summary of Inter-Dimension Relations

>>ToDo 31: To be completed. Are there others?

54

III MEASUREMENT PARADIGMS
What sorts of measurements can be supported?

>>ToDo 32: To be completed.

Extensibility. Axioms to test what sorts of measurements can be introduced, and how defined.

Axioms can establish that a measurement domain is not supportable, or that it should be supported in
a particular style [Section 11.2].

We first discuss the units-based paradigm and its variants, and then other measurement paradigms
which would not be supported by an implementation of the units-based paradigm.

11 The Units-Based Paradigm
We will describe in painful detail the characteristics of one well-behaved measurement domain,
namely Length. [I picked that rather than weight to avoid discussions of its relation to mass. I could
go back to using weight.] The significance of each characteristic will be illustrated by comparison with
some domains that behave differently. Afterward we can try to systematically characterize other sorts
of domains along similar lines.

It’s important to always keep in mind that we are discussing a concept other than numbers. We must
be especially careful not to assume any property for this domain just because it happens to hold for
numbers. Length is some mysterious notion which exists and has certain behaviors long before we get
around to measuring it and denoting it with numbers. We explore the properties of lengths, not
numbers, precisely for the purpose of establishing when and how the behavior of numbers provides a
correct model of the behavior of lengths.

The goal is to characterize a “units-based” measurement domain in the following sense: given two
lengths L1 and L2, there exists a unique real number k such that L1=kL2. The length L2 serves as the
unit for the measurement of L1. There’s a surprisingly large number of underlying assumptions that
have to be verified about the measurement domain before this paradigm will hold.

[Proofreading nuisance: I seem to wander between using L i and x, y, z for lengths.]

11.1 Fundamental Properties

11.1.1 We Know What It Is

To begin with, we have reasonably precise consensus on exactly what we mean by length, even if we
have struggle to articulate a precise definition. Certain modern physicists might not agree here, but
the context of Euclidean geometry is sufficient for our present purposes.

In contrast, we don’t have any such clarity on what exactly is meant by beauty, intelligence, sports
performance, etc.

A slight embellishment of this point (is it a distinct point?) is that we can recognize the individuals as
well as the collective concept. That is, there seems to be no real problem in agreeing whether a partic-
ular thing is a length or not. (This will be slightly challenged when we come to negative lengths.)

11.1.2 We Can Tell Them Apart

The concept of whether two lengths are the same or not is also sufficiently clear. This is an idealized
principle, neglecting concerns of precision and accuracy of measurement. Thus we can postulate a
simple, total equality comparison operator under which any two lengths are either equal or not. We
arbitrarily postulate our intuitive belief that this operation is reflexive (x=x), symmetric (if x=y then

55

y=x), and transitive (if x=y and y=z then x=z). Hence we may safely use the familiar = to denote this
comparison.

Contrasts arise in the same domains mentioned above. There is also such a problem with angles: is the
angle denoted by 360° the same as the angle denoted by 0°?

11.1.3 There Is Total Order

The notion of relative size is also sufficiently clear. We can safely postulate a total ordering under
which, for any two lengths, either they are equal or exactly one is smaller than the other. It seems safe
to use the familiar <, > symbols to denote ordering comparisons. (We postulate that the axioms of order
are satisfied, e.g., transitivity, anti-symmetry, anti-reflexivity.)

Same contrasts, including angles. 40°=400°, being simultaneously less than and greater than 100°.

11.1.4 There Is Combinational Closure

There is a well-understood concept of combining two lengths to yield another length, intuitively corre-
sponding to the notion of laying them end to end. Combining any two lengths in this way always yields
another length (the closure property).

While this has the sense of addition, we will denote this combinational operation by # rather than + to
emphasize that we are not yet talking about numbers, and hence not about arithmetic. The relevant
behaviors still need to be established.

Each domain potentially has its own combining operation which serves as the basis of the measure-
ment paradigm. For every x and y in a domain D, x#y must exist, and must be a member of that
domain.

There is no sense of order in the combination process. Our linear notation requires that we write one
participant before the other, but x#y means the same thing as y#x. We thus have

• Commutativity: x#y=y#x.

Order-independence is more than notational. If we first combine x and y, and then combine the result
with z, we get the same end result as combining x with the result of combining y with z. We thus have

• Associativity: (x#y)#z=x#(y#z).

This is a non-trivial requirement which might not be satisfied, for example, when mixing chemicals. If
we are to model # with the arithmetic of addition, x#y must be commutative and associative.

x#y must be repeatable: it must yield the same result for all instances x with equal magnitude, and for
all such instances y. This property is not always trivially satisfied: pouring a cup of salt into a cup of
water does not yield the same volume as pouring a cup of water into a cup of oil—combining volumes
is more than simply pouring them together. Similarly, the combining operator must depend only on x
and y. The result of combining two masses must not depend on the temperatures of the bodies whose
masses are being combined, and the result of combining temperatures must not depend on the masses
of the bodies. Combining two lengths must not depend on the angle between them, and combining two
angles must not depend on the lengths of the arms subtending the angles.

Summarizing, x#y must satisfy:

• Totality: x#y exists for any x, y in D.

• Closure: x#y is itself an instance of D.

• Repeatability: x1=x2, y1=y2 ⇒ x1#y1 = x2#y2

• Commutativity: x#y = y#x

• Associativity: (x#y)#z = x#(y#z)

56

>>ToDo 33: Counterexamples?

[Are there contrasting domains in which such an operation does not exist?]

11.1.5 Monotonic Combination

For lengths, x#y≥x. This doesn’t always hold, even in totally ordered domains, such as circular angles
[Section 7.1.2].

11.1.6 There Is A Natural Nil

There exists a length ∅ such that x#∅=x for any length x.

This nil length is unique. If x#∅1=x and y#∅2=y, then ∅1=∅2.

>>ToDo 34: Is uniqueness of nil an independent axiom?

11.1.7 There Are Differences

Combinational closure assures us that if x and y are lengths, then x#y is a length. It doesn’t guarantee
that there exists a length z corresponding to the difference between x and y. This has to be postulated
independently, and it comes in two flavors, absolute difference and subtraction.

Absolute difference: for any two lengths x and y, there exists a unique z≥∅ such that either x#z=y or
y#z=x. This will be denoted x∆y=z.

It should be provable that x∆y=y∆x.

11.1.8 Subtraction: There May Or May Not Be Negatives

If x>y, is there a length z for which x#z=y? In particular, if x>∅, is there a length z for which x#z=∅?
Yes and no.

Sometimes we want (3 feet − 4 feet) to be an error condition, and sometimes it is a legitimate negative
length (e.g., tides, or net yardage in football). An appropriate solution is to postulate two domains
(dimensions, types) corresponding to signed and unsigned lengths [Section 5].

We will use y~x to denote subtraction among lengths. For signed lengths, y~x always exists, and is the
length z such that x#z=y. For unsigned lengths, y~x is an error if y<x, otherwise it yields the same
result as for signed lengths. If y≥x, then y~x=y∆x.

>>ToDo 35: Does any of that need to be proved?

11.1.9 Multiplication and L-Rational Lengths

Associativity and commutativity of #, together with combinational closure, insure that any collection
of lengths can be combined in any order to yield the same result. In particular, the result of x#x#…#x,
involving k instances of x, is a unique length, which we can denote k*x or kx or x*k. We can arbitrarily
define 0x=∅, and observe that k∅=∅ for any k.

We have thus established that kx is a meaningful expression for any length x and any non-negative
integer k. Note that this is the first formal occurrence of numbers in this development. Previous postu-
lates have concerned lengths, not numbers.

Uniqueness of k is important and has to be independently postulated, i.e., for x≠∅, if k1x=k2x then
k1=k2. This axiom does not hold, for example, for circular angles [Section 7.1.2]. If x is a 1° angle, then
x=361x=721x…

Exercise: verify that k1x#k2x=(k1+k2)x, and also k1(k2x)=(k1k2)x. Does that follow from commutativity
and/or associativity of #? [Relates to Section 34.12].

57

We can introduce rational numbers as follows: if k1x1=k2x2, k1≠0, we then say that x1 = (k2/k1)x2. The
rational number k2/k1 is unique for given lengths x1 and x2.

For a given length L, we will say that the L-rational lengths are those which are equal to rL for some
rational number r. The set of such rational lengths clearly depends on the choice of L. It is intuitively
evident that a length which is rational relative to a one-inch length is irrational with respect to a length
which measures π inches. Similarly, for angles, those which are rational relative to an angle of one
degree are irrational with respect to an angle of one radian, and vice versa.

Observe: if L1 is L2-rational, then L2 is L1-rational.

11.1.10 Continuity and L-Reachable Lengths

If all lengths were rational with respect to each other, we would have a sufficient foundation for units-
based measurement. Any length L could be chosen as a unit, and any other length would be equal to
rL for some rational number r.

However, lengths are not all rational with respect to each other. We could extend the set of lengths
measurable using L if we allowed r to be a real number in the expression rL. However, we haven’t yet
defined what rL means for irrational r.

Mimicking the development of irrational numbers, an irrational length is one which is not rational but
can be approximated to any arbitrary degree of closeness by rational lengths. Remember that we
assumed that the notions of difference and relative size among lengths are well-defined for all lengths,
rational or not. All we need now is an axiom of continuity:

For any three lengths x1, x2, x3, where x2≠∅, x3>∅, there exists a rational number r such that
x1∆rx2<x3.

If we are trying to measure x1 using x2 as a unit, this axiom says that rx2 is a good approximation of
x1, differing from x1 by at most x3, which we can initially choose to be as small a non-negative length
as we want. This has to be postulated as an independent axiom for a domain such as Length.

>>ToDo 36: Further proof needed?

[Do we need one more step to justify the use of irrational numbers to measure irra-
tional lengths?]

It may be sufficient to reason only about the L-rational lengths. Problems with equality? Uniqueness
of measure? (Domains which are representable by bit strings are totally L-rational. May be able to
reason interestingly about the domain of representable colors.)

11.1.11 Coverage

In order for something to be a unit, every instance of the domain must be “reachable”, i.e., expressible
in terms of the unit. For a unit u, any instance x must equal ru for some number r.

For a given length L, we have extended the set of “reachable” lengths to those which are expressible as
rL for some real number r. An axiomatic property of lengths is that all lengths are reachable as rL for
any length L.

This is not true in all domains. It fails for vector dimensions such as velocity. There is no velocity V
such that any velocity can be expressed as rV.

This probably also explains why colors can’t be measured with a simple unit. I.e., there does not seem
to be a single color C and a single combining operation # under which any color is equal to rC for some
rational number r.

58

11.1.12 Degenerate Units

In general, a domain is units-measurable if the domain has a 1:1 correspondence onto the rational (or
real) numbers. This implies some mapping M from the domain onto the numbers.

Our previous analysis has based such a mapping on some intuitively natural operation on the under-
lying quantities, such as laying lengths end-to-end or volumes side-by-side. For colors, we’d like to
imagine some natural operation such as mixing of some sort.

However, such “natural” operations are not necessary. If there exists some sort of mapping, perhaps
arbitrary, from a domain to the numbers, which satisfies the necessary axioms, then the domain is unit
measurable. We reverse the previous development by saying that x#y=z if M(x)+M(y)=M(z), and so on.
Any element x can serve as a unit, such that for any y in the domain, y=[M(x)/M(y)]x.

There might be subsets of certain domains, such as computer-representable colors, which can be
measured in this sense.

>>ToDo 37: To be investigated.

11.2 Variants Within the Units-Based Paradigm

>>ToDo 38: To be completed.

This is where we can talk about variations which might be supported within the units-based paradigm.
Presumably correspond to some variants of the axioms developed above.

E.g., ordinary addition vs. modulo addition, point vs. interval, others.

Exponentials, such as dB, pH, and Richter scale, probably also come here. Observe: if there is no addi-
tion, is there subtraction? How do differences work?

[Again, need to wrap up with some sort of conclusions, as well as a capsule
summary of the axioms and their uses.]

12 Vector Dimensions

>>ToDo 39: More to be said?

Some dimensions, such as velocity, field strength, locations in n-dimensional space, etc., are well-
modelled by the mathematical notion of a vector. For vector operations to yield intuitive results on an
instance of a dimension, it should have these properties:

• It is a single physical quantity. Collections of related quantities are discussed in Section 13.

• It requires more than one number to represent it. The numbers must be required: constructs like,
“5 feet, 5 inches,” used to mean 65 inches, do not qualify, since they can be replaced by a single
number (these are discussed in Section 19.2). Similarly, a speed of “5 miles in 2 hours” can be
replace by “2.5 miles/hour.” 1-element vectors are the same as scalars, and we don’t discuss them
here.

• Vector quantities are equal if and only if they are equal under element-by-element comparison.
This again disqualifies speed described a “5 miles in 2 hours,” since it is equal to “10 miles in 4
hours.”

• A vector with a different number of elements belongs to a different dimension. Thus, a location
in two-dimensional space is a different dimension from a location in three-dimensional space.

Section 19.4 and Section 26.3 describe ways to represent and manipulate vector physical quantities.
We confine the discussion to 1-dimensional vectors whose elements are themselves scalar physical

59

quantities. These restrictions are not required in principal, but they simplify the discussion, and our
intuition hasn’t shown us any reason to remove them.

>>ToDo 40: Stephanie’s questions:

Question: Should vector dimensions be in the type hierarchy?

I know we originally decided that they should be (rather than having just scalar
dimensions, and then a Vector type), but I thought we might reconsider this, espe-
cially as we are thinking of keeping Aggregate out of the type hierarchy. There seems
to be some inconsistency here, and I’m not sure how to resolve it.

I still do think that vector dimensions belong in the type hierarchy, with similar argu-
ments as I used for the null dimension. If a vector dimension isn’t in the type hier-
archy, then all specializations of what we are calling vector dimensions must be
done component-wise. This means that <time,time> will always be compatible with
<time,time> This is probably not flexible enough. (We could always product the
effect of vector specializations by creating specialization of the components just for
their vector use, but this seems sort of kludgy to me. The ideal solution seems to be
to allow the entire vector to be specialized, this implying that vector dimensions are
in the type hierarchy.)

Question: Is the assumption of considering derived dimensions to be multiplicative
combinations of only scalar dimensions too restrictive? What about considering
vector dimensions to contain only scalar dimensions as components?

Proposal: Vector dimensions are made up of an order-dependent list of dimensions.
These dimensions can be regular, specialized, or vector dimensions. (Note: they
can’t be quasi-dimensions, as we are not currently considering quasi-dimensions to
be “true” dimensions. This seems strange, as <time,concentration> seems like a
perfectly good vector dimension to me. This needs discussion.)

A derived dimension is a “mathematically legal” multiplicative combination of
dimensions. For example

time<distance,mass>

is legal, but

is not, as the inverse of a vector doesn’t make sense. Similarly,

<dim1, dim2><dim3, dim4>

is not legal, as dim1*dim3 + dim2*dim4 is not a legal dimension. (I think that the rule
is that only scalar multiples of vectors are OK, and the scalar can be made up of an
arbitrarily fancy dimensional expression.)

Question: Can the functions Dimension, Unit and PhysicalQuantity be called on both
SPQEs and VPQEs, or can these functions only be called on SPQEs and compo-
nents of VPQEs?

Related questions: is a vector dimension uniquely determined by its associated
tuple of dimensions? For example, (width, height) and (x, y) are both (length, length),
but it may not be the case that they should be treated as compatible (in the same
vector dimension). Should the representation of a vector dimension be a tuple of

time
dis cetan mas s, }
--

60

scalar dimensions or a single vector dimension? If a VPQE is represented as a tuple
of SPQEs, how do we know that its dimension is velocity (rather than <meters/sec,
heading>)?

I had been thinking that the dimension of a vector dimension would be the vector of
the dimensions of its components. However, this is a direct contradiction to being
able to specialize a vector dimension. I don’t know how to reconcile this. I think this
is the most important open issue for vector dimensions.

13 Aggregates

>>ToDo 41: More to be said?

[Stephanie:] Question: Are we going to pursue what is needed to support aggregate
measurements? Should aggregates be in the type hierarchy?

The answer to this may depend on the answer for vectors, as they are a special case
of an aggregate type. How does OpenODB handle this? (I think vectors should be in
the type hierarchy.)

An aggregate of measurements is a set of measurements organized in some way. For example, a wave-
form consists of a number of readings taken over time. Similarly, a set of measurements might be asso-
ciated with a grid, where there is one measurement at each Cartesian coordinate (given some
granularity). The boundary between aggregates and non-aggregates is not always clear. For example,
a waveform can also be represented as a number of individual measurements, each of which carries
time information as part of its context.

The notion of aggregate is loosely-defined: as suggested above it could mean variously a set, list, grid,
or uniformly-spaced grid, and can have any number of dimensions. We therefore do not try to say
specifically what is involved in supporting aggregates, but we make a few characterizations.

• It is necessary to define them, of course. The elements being aggregated must all be of the same
type, but the aggregate may also contain information of other types (such as the time duration
between voltage samples).

• It is desirable to be able to add and remove members.

• The arithmetic operations and compatibility rules need to be specified. They may simply be the
usual rules applied element-by-element, but they may be much more complex, as in addition of
waveforms whose sample times do not coincide.

• The “value” of an aggregate may be defined. It will often be the arithmetic mean of the members,
but it could be the mode, the maximum, or any other property. An aggregate need not have a
“value.”

• Aggregates may have properties which the individual members do not, such as:

– Number of elements

– Spacing between elements

– Statistical properties of the distribution of the elements: moments, bounds, etc.

These can be computed automatically, but the notion of which ones are relevant must be pro-
vided in the definition of the aggregate.

One interesting kind of aggregate omits the elements, and mentions only the statistical properties (we
call this a virtual aggregate). When we speak of the temperature of a glass of water, we mean the
temperature of many water molecules, all assumed to be at approximately the same temperature.

61

When we speak of the last hour’s wind speed, we mean not only the speed of many air molecules moving
past our measuring device, but also the aggregate of many speeds during that hour. Note that we some-
times give an average to describe wind speed, and sometimes a mode and a maximum, as in “winds of
20 m.p.h., gusting to 50.” If we speak of the temperature of the Pacific Ocean, we now mean the aggre-
gate over many points in the ocean’s volume (where each point is itself an aggregate similar to the glass
of water). This sort of aggregate—with the elements omitted—can thus be taken over number, time,
and space.

Note that the examples above have exact values. There is an average of the temperatures of all the
molecules in a glass of water at an instant; there is an exact average, over all air molecules, of all their
speeds in the past hour; and there is an average temperature of all the water molecules in the Pacific
Ocean at an instant. People rarely mean such things in practice, and it would be infeasible to compute
them. In the examples cited, if we actually reported such a value, it would be distinguishable by its
extraordinary precision. Nevertheless, these examples reveal an ambiguity in using statistical proper-
ties to describe an aggregate. This ambiguity is already present, of course, and each discipline’s
common practice has found ways to work around it. A system supporting physical quantities need not
try to resolve these ambiguities, but it should be prepared to deal with virtual aggregates. There are
three ways to do this:

• One can develop a separate mechanism to represent them.

• One can use the existing mechanism for ordinary aggregates, but omit the elements.

• One can represent the value of a virtual aggregate with a scalar, and carry the statistical prop-
erties as context.

14 Enumerations
Question: Are enumerations units or dimensions?

Solution: Enumerations (such as grades) are the range of units. They are generally coarse-grained over
a continuous domain.

>>ToDo 42: Does enumeration correspond to a different measurement paradigm?

[Speculation: that constitutes another sort of measurement paradigm. If not, then
maybe this stuff should get moved over to Units. Maybe it should be mentioned there
anyhow.]

15 Non-Units-Based Measurement

>>ToDo 43: To be completed.

This is where we might talk about other paradigms such as testing, polling, judging, and formulas
(statistics?) (e.g., batting averages, quarterback ratings).

Things like intelligence, beauty contests, sports performance, computer performance (efficiency),
complexity, usability, etc. all come in here.

The general thesis: units-based paradigms don’t apply, hence some other paradigm is required as a
basis for computational support.

15.1 Counts

Notes...

In one sense, units-based measurement is nothing but counting: how many units is this magnitude
equal to? Also, is it still counting when fractions are involved? We can probably contrive some exam-

62

ples. Fractional frequencies, average populations or committee sizes. (“The average size of the
committee over the past year is 4.8”.)

Counting is the limiting case of units-based measurement, when there is just one natural and self-
evident. The unit happens to be something that we perceive as a natural whole entity, unique in its
domain. Units-based measurement would look more like counting if we didn’t have to mention the unit,
if it was a self-evident default. (Examples: populations, committee sizes. If someone said the committee
size is nine, you wouldn’t ask “nine what?”. Distance might be the same if it was always in meters.
Highway signs often look like counts because the units are implicit.)

>>ToDo 44: Open questions about counts and frequency:

• How would we characterize frequency? As 1/time? As unary/time? As count/time? Is there a
difference?

For now, we will characterize frequency as 1/time.

• Where does count go in the hierarchy? Consider count/time.

We are not considering count as a specialization of the unary dimension for now becuase we can
specialize from things like 1/time. (We don’t need count-spec/time to get the effect we want.) Part
of the problem of putting count in the hierarchy as a specialization of the unary dimension is
that we get into the discussion of “count of what?”. For example, is a count of population compat-
ible with a count of cycles? It is counter-intuitive [pun?] to allow things like birthrate and elec-
trical frequency to be combined, however, they both have a dimension of 1/time. This could be
handled by specializing 1/time. We currently think that this is a better solution than adding
count as a specialization of the unary dimension, and ending up with things like people-count/
time and cycle-count/time. (Messy issue - making specializations based on “count of what”.) We
may need to revisit this when we look at specializations and the type hierarchy.

• How do we position count in the graph so that it can belong to the “dosage rate” quasi-dimension?

We might need to convert cc’s or milligrams into capsules or pills, and cc/min into drops/min.

If we did put Count into the type graph, we might wind up with

16 Generalized Type Graph

>>ToDo 45: To be completed.

Now that we have broadened what we mean by “dimension,” it is time to revisit our type hierarchy.
How has it changed?

• Quasi-dimensions are ways of organizing existing dimensions, but are not themselves dimen-
sions. They don’t add anything to the type graph, nor remove anything from it.

mass

mass

time

time

dist

dist

Unary Dim

Ratio

Count

63

• Aggregates are ways of organizing elements of existing dimensions, but are not themselves
dimensions. They don’t add anything to the type graph, nor remove anything from it.

• Point “dimensions” are not physical quantities in the sense we defined in Section 34.7. What are
they? Are they siblings of PQ?

• Specialized and vector dimensions are themselves dimensions. One of them can be used
anywhere that a dimension can: in an aggregate, as a member of a quasi-dimension, as a differ-
ence between two points, as an element of a vector, as the object or result of a specialization.
What is the canonical form of a specialized dimension? of a vector dimension?

• We added a new relation, “specialization” to the type graph.

>>ToDo 46: Stephanie’s questions:

Question: We need to answer the questions regarding where generalized dimen-
sions fit in the type hierarchy, whether or not quasi-dimensions can be formed from
specialized dimensions (and vice-versa), and what is the most general form of a
dimension.

I haven’t addressed yet whether or not quasi-dimensions can be formed from
specialized dimensions or vice-versa. I think that depends on how quasi-dimensions
fit into the type hierarchy (if at all), so I will address that issue first.

Quasi-dimensions are not currently in the type hierarchy. This means that “time” can
be a subtype of PQ, but “concentration” cannot. This also means that we can’t
specialize a quasi-dimension. This doesn’t feel right, but allowing concentration to
be a subtype of PQ leads to lots of messy hierarchies. Here are some alternatives we
have looked at, each of which have quasi-dimensions in the type hierarchy, under
PQ. The first two alternatives are not good (as described below). The last alternative
might be a possibility, but certainly needs to be discussed.

Physical
Quantity

Null Concentration

vol

vol

mass

mass

mass

vol

subtypes

specializations

64

The biggest problems with this type hierarchy is that vol/vol and mass/mass are
going to be specializations of both Null and Concentration, and mass/vol is always
going to be a specialization of concentration, no matter how it is used.

The problem with this type hierarchy is that it is not clear what kind of relationship
exists between myConcentration and vol/vol, mass/mass and mass/vol.

The following I think is a possible way to include things like Concentration in the PQ
type hierarchy:

Physical
Quantity

Null Concentration

vol

vol

mass

mass

mass

vol

myConcentration

subtypes

specialization

subtype

???

65

In this hierarchy, all subtypes of a concentration are quasi-compatible (it is possible
to convert among them as discussed in the section on quasi-dimensions). In addi-
tion, each specialization making up the subtypes of a concentration has a unique
canonical representation. Thus, Concentration is an abstract supertype, and all
instances of it must be instances of one of its subtypes.

Question: There is a note that in order to do static type checking, we probably have
to introduce dimensional subtypes of PQEs, so that we know that height(Bill) is
being assigned to a length PQE and not a time PQE. Are we sure of this? What else
do we need for static type checking?

I believe that the only types we will need are SPQE and VPQE, with PQE as an
abstract supertype. We need SQPE to check for arguments to the functions

dimension(SPQE) -> ScalarDimension

units(SPQE) -> Unit

number(SPQE) -> Number

These are the only PQE types we need because all of the rest of the functions
needing type checking would be on PQ subtypes, such as

height(Person) -> Length

rather than on SQPE subtypes. The automatic conversions between PQEs and PQs
should make this kind of type checking possible. (This is assuming that we can
determine the dimension of a PQE from its unit - the unique names argument. If this
is not possible, we probably do have to have dimensional subtypes of PQEs, one for
each dimension.)

Physical
Quantity

Null

Concentration
vol

vol

mass

mass

mass

vol

subtypes

specialization

Quasi-
Dimension

concentration
vol

vol

concentration
mass

mass

concentration
mass

vol

subtypes
specializations

subtype

66

One reason that we might want to subtype SPQE and VPQE is to support storage of
a PQ as a specific kind of PQE (perhaps we might want to store all distances in
meters). Another possible use might be to support the requirement of storing the
exact string entered (although this might really require storing a string instead of a
PQ). I can’t come up with a compelling need to subtype SPQE and VPQE - these are
just some areas where it seemed like it might be useful.

Question: can we always determine the type of an expression, even if it includes
quasi and/or specialized dimensions?

First step - check for legality. If the expression is not legal, than we do not need to
determine its type.

Does the expression have specialized dimensions in it?

No: use standard dimensional analysis to determine the type

Yes: is the resulting dimension named? For example, if we get the expression

and we know that

then we would use specDim3 as the resulting dimension. If the resulting dimension has
not been named, then treat the specialized dimensions as their associated canonical
forms, and use standard dimensional analysis to determine the result.

Does the expression have quasi-dimensions in it?

I don’t know how to handle this, For example, what should

be considered as? I think it might depend on how we put quasi-dimensions into the type
hierarchy, but I’m not sure.

specDim1
specDim2------------------------------

specDim1
specDim2------------------------------ specDim3=

concentration
time--

67

IV UNITS AND CONVERSION

17 Units Stuff

>>ToDo 47: This all needs review and reorganization.

• How to recognize unit names.

• How to infer dimensions from units.

• Conversions: when, how, results.

• Defaults.

Some of this may overlap the language stuff later.

17.1 Units

To communicate the value of a physical quantity between a computing system and its clients, we use
a thing very similar to the “unit” discussed in Section 3.4, but which need not be a physical quantity.
We discuss these here.

Once we finish Section 34.7, clarify the above: the unit discussed above is, by defi-
nition, an amount of mass, length, etc.; whereas the unit discussed below is simply
a mapping, and need not be any physical quantity at all.

17.1.1 Straightforward Units

A unit is a mapping from a dimension to a number. For example,

Kilograms(Mass) → Number.

A simple unit is one with no implied multiplication, such as feet, kilograms, or watts. A compound unit
is a multiplicative combination of simple units, such as feet/second or watt-hours. Compound units are
usually reduced to lowest terms, but not necessarily: units such as inches/inch or seconds/second are
also legal, and occasionally useful.

Some derived dimensions have both simple and compound units associated with them; for example,
voltage and resistance each have their own simple units. In such cases, the corresponding compound
unit is rarely used (nobody records resistance as volts/amp). Other derived dimensions are expressed
only in compound units, such as feet/second.

There are issues about how to infer the dimension of a quantity from its units on input, and how to
express its dimension by means of units on output. We discuss those in Section 22, Section 34.13, and
Section 29.3.8.

>>ToDo 48: Where do we talk about several dimensions having the same units?

17.1.2 More Complex Units

The units mentioned in Section 17.1 are physically and mathematically well-behaved. We mention
here some of the complexities which units can exhibit. Some of these complexities occur because the
mappings are not counts of unit quantities; those are outside the scope of this discussion. Others are
counts, but still exhibit complex behavior; these suggest richer functionality than is currently found in
systems supporting dimensioned data.

Although most units map the ‘nil’ value of a physical quantity to zero (no mass is mapped to 0 kilo-
grams, slugs, or ounces; no length is mapped to 0 miles, kilometers, or parsecs, etc.), this is not
required. The Fahrenheit and Celsius temperature scales reach 0° at temperatures which physicists
do not call “no temperature.” The Gregorian calendar reaches 0 at a date which cosmologists (and even

68

theologians) do not call the beginning of time. Logarithmic scales usually measure ratios, and reach a
value of 0 for ratios of 1.

>>ToDo 49: Does a dimension have to be totally ordered?

We said above that a unit maps from a dimension to a number. More generally, a unit maps from a
dimension to a subset of the real numbers, and still more generally, to any ordered set [doesn’t it have
to be totally ordered?] . Examples of such sets are:

• Compass points (numeric, between 0 and 360)

• Compass points (letter set, such as NNE)

• Nonnegative integers

• Rationals between 0 and 100, inclusive

• The categories Low, Medium, High

• The letter grades A–F

The concept of generalized units becomes especially important when we consider “soft” dimensions,
such as are found in the social sciences or business. Things like intelligence, quality, productivity, effi-
ciency, reusability, risk, net worth, complexity, usability, etc., are often measured quantitatively. The
units for such measurements are difficult to determine and are often controversial. This paper is not
concerned with the meaning of such quantities—only with ways to operate on measurements of them.
Of course arithmetic is not possible on non-numeric values, but assignment, comparison and unit
conversion are still meaningful.

A unit’s mapping may be time-dependent. For example, the meaning of the volt changed at the start
of 1990, and the value in U.S. Dollars of a British Pound is different on different days. Other units
(such as “1960 Dollars”) can be defined which bind the time parameter, but time-dependent units still
exist. Note that by choosing one currency (such as the U.S. Dollar or the ounce of gold) as an “anchor”
it is possible to isolate the value of commodities from fluctuations in the anchor currency. This is just
a notational convenience, however, as all other currencies are still time-dependent.

A unit’s mapping may be inherently approximate. For example, a “pinch” is nominally 1/8 teaspoons,
but it is absurd to talk about 1.2 pinches of salt. The same is true of Few/Not Many/ Many—the same
physical quantity may be mapped to different values at different times, and vice-versa.

>>ToDo 50: Units questions:

How should the range of units be generalized? For example, a unit is currently a
mapping from a PQ to a number. This could be more general. Consider such exam-
ples as grades and compass points. How do the units and number functions work?
Should the name of the number function be changed to accommodate this?

The most general range of a unit is a set (enumeration). Must members of that set be
ordered? This brings up the associated issue: must all dimensions be ordered?

17.1.3 Unit Names

Note that a unit is not the same thing as its name. The mapping that maps Bill’s height to the number
6 has the names “foot” and/or “feet,” but it may have other names as well, and it need not have any
name. It is also possible for the same name to refer to any of several units, perhaps corresponding to
different dimensions. For example, the name “pounds” might refer to a unit of force or a unit of money
(and thus the name of the unit does not unambiguously determine a dimension), and the name “ton”
might mean short ton, long ton, or metric ton, all of which are in the mass dimension (so the name
determines a dimension unambiguously, but the mapping is ambiguous). In each case there is no ambi-
guity about the dimension, nor the mapping associated with the unit, only about which unit is denoted

69

by the name. This name→unit ambiguity can be resolved by requiring the use of unambiguous unit
names, such as “money.pounds” and “weight.pounds”, or “short-ton”, “long-ton” and “metric-ton,” or by
restricting the set of units allowable in a given context.

As discussed in Section 19.5.2, the prefix “kilo-” can denote multiplication by 103 or 210. Again, this
illustrates a name→unit ambiguity, rather than any confusion about the unit’s mapping or associated
dimension.

In this paper we are concerned with units, rather than their names, and we assume that the names
used for units are unambiguous.

70

V COMPUTATIONAL SYSTEM SUPPORT
>>ToDo 51: Total review needed.

[THE REST OF THE DOCUMENT REALLY NEEDS A GOOD REVIEW. I’VE JUST SORT
OF PILED IT ALL UP BACK HERE.]

18 Introduction

>>ToDo 52: To be completed.

This may not be worth a full section. Main message: we sometimes describe alternatives, and their
tradeoffs, leaving it to language and system designers to choose.

Maybe also provide an overview of subsequent sections here.

18.1 Types of System Appropriate for Delivering Support

[Is this note from Bruce?] Characterize them. Ideally, of course, everything would
support PQs. In practice, only those likely to deal often with information about the
world, and large enough to amortize the effort. For example, engineering calculators,
test executives, database management systems, programming languages.

19 Syntactic Matters

[Note. I’m using “syntax” to denote things a user sees, and “implementation” to
denote things he doesn’t see.]

19.1 Physical Quantity Expressions (PQEs)

Dimensioned data represents physical quantities. The expressions “6 feet” and “2 yards” represent the
same length, just as a certain social security number and a certain employee number represent the
same person, and just as 2 (in base 10) and 10 (in base 2) represent the same number. It is useful to
imagine a system in which the internal representation of lengths is hidden from users, much as the
internal representation of an object identifier might be hidden in an object system, or as the internal
representation of a number is immaterial to the semantics of a programming language. If the values
of x and y are lengths, then it should be possible to compare them, add them, or multiply them by a
constant, all without having to specify the units of measurement. Furthermore, it should be possible
to add 2 inches to the length of something without specifying the units of that length. On the other
hand, it is necessary to express lengths in forms such as “6 feet” or “2 yards” for input and output of
data; it is also likely that most implementations will store the data in some such form.

This implies a type system which distinguishes between physical quantities and the expressions (such
as “6 feet”) used to represent them. Units link the two concepts, providing the mappings between phys-
ical quantities and the numbers which occur in their representations. For example, the length of a car
is a physical quantity (a length), and a concept in its own right, even if we do not specify any units or
a number associated with that length. In fact, until a unit is specified, a number cannot meaningfully
be associated with a physical quantity.

In a sense, these are adaptations of two principles of object technology: identity and encapsulation. The
identity principle says that things have identity independent of their properties. The encapsulation
principle says that the internal representations of things is immaterial to their external semantics, i.e.,
their behavior under operations.

A construct such as “2 feet” or “5 miles per hour at 90 degrees” is a physical quantity expression (PQE),
whose evaluation yields a physical quantity. PQEs are analogous to numeric expressions, whose eval-

71

uations yield numbers, and to character expressions, whose evaluations yield character strings. There
is a difference, however. Numbers and character strings have direct external representations of their
own, while physical quantities do not—they can only be represented externally by PQEs. We do not
propose specific syntax here for PQEs. Instead, we use informal notations such as “2 feet” and (2 feet)
in examples.

A PQE is not a physical quantity, but an expression which evaluates to a physical quantity. This
convention simplifies the treatment of equality. The expression

(72 inches) = (6 feet)

is true in a natural way, since the two terms evaluate to the same physical quantity. The equality does
not involve comparisons between 72 and 6 or between “inches” and “feet”.

Quoting conventions can be adopted for operations on the PQEs themselves. For example, it useful to
have an operation which tests the units in which a PQE is expressed. Thus Unit(“72 inches”) returns
“inch”, and does not refer to the underlying length itself. This is analogous to an operation which counts
the terms in an arithmetic expression, e.g., Terms(“1+3”) is two, having nothing to do with the number
four (which is the value of the expression). The Units operator helps reinforce the distinction between
Physical Quantity Expressions and Physical Quantities. It makes sense to speak of the unit in “4.25
inches,” but it does not make sense to speak of the unit in the width of my hand.

Another way to see the appropriateness of treating PQEs as expressions is to see them as a syntactic
variant of traditional expressions. PQEs such as “2 feet”, “5 m.p.h.” or “16 kilograms” are essentially
just peculiar syntax for the functional inverse of the mappings “feet,” “m.p.h,” and “kilograms.”
Suppose, for example, that the value of x is a certain length, denoted by |↔|. Then the unit mapping
feet(x) might yield 6, signifying a length of 6 feet. The expression feet-1(6) is the inverse,1 mapping back
from 6 to |↔|. Thus the PQE (6 feet) can be read as feet-1(6); its value is that length which is mapped
by feet into 6.

Just as physical quantities can be broken down into scalar and vector physical quantities, a PQE can
be either a scalar physical quantity expression (SPQE) or a vector physical quantity expression (VPQE).
VPQEs are described in Section 19.4.

Every SPQE has an associated number, unit, and dimension. SPQEs have the following functions
defined on them:

1. The functional inverse, not the multiplicative inverse. I.e., a function which maps numbers of feet
to Length, not 1/feet.

feet

feet-1

yards

6

2
yards-1

Length Mapping Number

72

dimension(SPQE) → Scalar Dimension

units(SPQE) → Unit

number(SPQE) → Number

>>ToDo 53: SPQE’s in the type graph?

[Observe that such function signatures imply that we have SPQE in the type graph.
It would be interesting to generalize that to arbitrary expressions as objects.]

Stephanie’s question: Our description of functions defined on SPQEs implies that
SPQE is in the type hierarchy. This is mentioned, but not pursued.

My first inclination was not to put PQE (or SPQE) into the type graph. After all, inte-
gers are in the type graph, but there is no equivalent “integer expression” in the type
hierarchy. Since our rules for conversion between PQs and PQEs, such as

height(Person) -> length

allows statements such as

height(Bill) := 6 feet

we seem not to need an explicit PQE type.

However, if we want to support the functions

dimension(SPQE) -> ScalarDimension

units(SPQE) -> Unit

number(SPQE) -> Number

then we pretty much have to have SPQE in the type graph, since neither the units nor
the number function makes sense on a PQ. In this one case, we do distinguish
between PQs and PQEs. So, my recommendation is to put PQE, SPQE (and perhaps
VPQE, depending on how we handle vector dimensions) into the type hierarchy. I
would imagine the following:

It should be assumed that the arguments are quoted, i.e., not evaluated to the underlying physical
quantities. If units uniquely determine dimensions (which may not be the case under dimension
specialization [Section 23]), then the dimension component can be inferred from the unit.

19.2 Additive PQEs

We call an expression such as “5 feet, 5 inches” (used to represent a length of 65 inches) an Additive
PQE (APQE). In an APQE, all elements belong to the same dimension, and are used to represent a
single physical quantity, in much the same way that an expression such as 1+2 represents the single
number 3. APQEs are useful in many circumstances, such as for representing time (hours, minutes) or
date (year, month, day). All of these examples have the property that they divide the representation of

SPQE VPQE

PQE

subtypes

73

a single physical quantity into units of different granularity in a (coarse, fine, finer, finest) format, with
the result implicitly the sum of the elements of the APQE. For example, feet is a coarser measurement
of length than is inches, and “5 feet, 5 inches” represents a single length (65 inches) that is the sum of
the elements.

The elements of an APQE are ordinary PQEs, not vector PQEs or other APQEs. The Dimension() func-
tion of an APQE is the same as for an ordinary PQE. Unit() and Number() functions are not directly
meaningful, but if we provide a way of decomposing an APQE into its constituent PQEs, then Unit()
and Number() functions can be applied to these. Except for this fact andm certain I/O issues , an APQE
is treated just like the corresponding sum.

In contrast to a VPQE, an APQE representing a specific physical quantity does not have a fixed
number of elements. For example, an APQE representing 2.5 meters might be written as “2 meters, 50
centimeters,” or “2 meters, 40 centimeters, 100 millimeters,” or even “2 meters, 19 inches, 1 centimeter,
7.4 millimeters.”

The representation of APQEs is discussed in Section 29.3.5.

>>ToDo 54: More needed?

Stephanie’s question: What do we want to say about APQEs? Are we satisfied with
the level of detail we have? Do we want to address how to distinguish a VPQE from
an APQE? Do we care where APQEs are in the type hierarchy?

We say that APQEs do not need to go into the hierarchy, as they are constructed only
as necessary. Are we sure that this means they don’t need a place in the type hier-
archy? How can we convert from an APQE to a PQ if we don’t have functions
(presumably on APQE) available to do the conversion?

19.3 PQEs With Non-numeric Units

When physical quantities are mapped into non-numeric values (A/B/C/D/F, pass/fail, high/medium/
low, North/East/South/West), common usage omits the name of the unit, and the resulting expression
is just the corresponding value. We know how to allow administrators to define such units and how to
store them (as user-written functions), and we know how to represent their outputs (as ordered sets
with string-valued print representations); but we do not know how to tell on input which dimension is
intended (since we can’t force an unambiguous unit name). Conversion among such units is difficult,
and is discussed in Section 34.11.

19.4 Vector Physical Quantity Expressions

A vector physical quantity expression (VPQE) represents a vector physical quantity, such as velocity.
Each component of a VPQE is a scalar physical quantity expression (SPQE), with an associated dimen-
sion, unit and number. Access to the individual components of a VPQE can be provided in at least two
ways. They can be accessed by position number (in which case the ordering of the components is signif-
icant), or the components can be individually named, and thus accessed by name. In either case, there
must be a mechanism for determining the number of components of a vector. If components are
accessed by name, there must be a mechanism for determining the names of all the components. A
coordinate system is associated with a VPQE; it is outside the scope of this discussion how this infor-
mation is communicated between a system and its users. A dimension is also associated with the VPQE
itself, separately from the dimensions of its components. Two vectors with a different associated
dimension are unequal (actually, incommensurate), even if they are element-by-element equal.

Recall that a scalar physical quantity expression (SPQE) has the form:

(number unit)

74

A VPQE has the form:

<SPQE, SPQE, …>

For example, a VPQE representing a velocity might look like

<(5 m.p.h), (170 degrees)>

In defining a new vector dimension, a user needs to provide:

• The name of the dimension (must be unique)

• The dimension of each component

• The mappings (in both directions) between each of the permissible coordinate systems and the
reference coordinate system (the reference coordinate system is discussed below). For the conve-
nience of users and administrators, the coordinate systems will probably also have names.

19.5 Units Recognition

>>ToDo 55: To be completed.

Topics:

• Composite units: feet/second/second.

• Homonyms: pounds weight vs. pounds money.

• Synonyms: pound vs. pounds vs. lb vs. lbs. Miles/hour vs. mph.

• Implicit units from declarations, defaults.

• Prefixes.

• Inferring dimensions from units.

19.5.1 Derived Unit Names

>>ToDo 56: To be completed. Are we agreed on this stuff?

19.5.2 Prefixes

It is possible to recognize any of the SI prefixes [1] in front of an SI unit, and generate the appropriate
multiple. Thus, once grams are known it would not be necessary to define micrograms. [1] recommends
that the SI prefixes not be applied to other than SI units, so that a system would not automatically
recognize nor generate “femto-yards”. Note, however, that the standard also recommends that “yards”
not be used at all. If a system chooses to follow this recommendation, that implies that prefixes are not
automatically applied to user-defined units—if a user wants to use kilodollars, they must be defined
explicitly. [1] gives other practical rules for use of the prefixes.

The prefix “kilo-” can denote multiplication by 103 or 210, and similarly for mega-, giga-, etc., but not
for milli-, micro-, etc. This is discussed in [23]—generally, kilo- means 210 for addressable computer
storage, and it means 103 for everything else. Users need a way to tell a system which is intended, or
the system needs a way to infer it. Either of those is outside the scope of this paper.

A system designer has the choice to allow the set of prefixes to be extended. On the one hand, the set
changes very slowly. On the other hand, certain professions or countries may wish to add prefixes.

19.6 Coordinate Systems

>>ToDo 57: Why is this here?

75

[Relate to my observation somewhere else that the units themselves might incorpo-
rate a notion of “origin”.]

PQEs are sometimes understood with respect to some coordinate system. Sometimes the PQE is
embedded in a statement which names the coordinate system explicitly, as in “5 miles west of Cleve-
land,” and sometimes the coordinate system is understood from the context (“he gained 5 yards”) or
from the choice of unit (“250° Celsius,” “37.5 degrees West, 12.1 degrees North”). The choice of coordi-
nate system affects the meaning of addition of PQEs, multiplication of SPQEs by a dimensionless
quantity, and multiplication of VPQEs by a dimensionless scalar.

If enough information is known, quantities can be converted between coordinate systems, in much the
same way as they can be converted between units. Support for dimensioned data can include means
for associating a coordinate system with a PQE, for converting between coordinate systems as needed,
and for adding, changing and deleting coordinate systems. See also Section 17.1.2, Section 34.7, and
Section 12.

20 Basic Computational Support
Basic dimensional support deals with the case in which there is a 1:1 correspondence between dimen-
sions and their associated canonical forms. If a problem is well-modeled by (or can be restricted to)
dimensions which satisfy this property, then what we describe as basic dimensional support applies to
that problem.

20.1 Declaring Dimensioned Data

A system supporting dimensioned data should provide a type hierarchy, populated with an initial set
of dimensions and units. The SI reference units [1, 4] are a good starting point, possibly augmented by
money. Weight can be provided in addition to Mass (or instead of it). The ability to introduce new
dimensions and units is described in Section 21.1.

Such a system also provides capabilities to declare the types of variables and function arguments and
results.

>>ToDo 58: Declaring variables with and without units.

[Discuss or refer to the tradeoffs between declaring with and without units. Accom-
modate both.]

Attribute functions (e.g., the height function defined on persons) and variables can be declared to have
a dimensional type such as Length. Thus the signature of the height function might take the form

height(Person) → Length.

Units need not be associated directly with attributes and variables of dimensional type, in the same
way that units are not associated with instances of physical quantities. Different units may be used
when assigning or retrieving the values of an attribute or variable at different times.

One could associate units with such variables, if one wanted. For example, we might declare the vari-
able myHeight to be a length in feet. In this case, the only values it could contain would be lengths
measured in feet. Variables like this are useful in expressions like “heart_rate ≤ age * 1.5,” where
heart_rate is in beats/minute and age is in years.1 The desired coercion can be stated once in the decla-
ration, and subsequent use is clearer and less error-prone.

1. It is arguable that this is an expression among numbers, rather than among physical quantities.
We take no stand on that issue—if users want to treat such quantities as numbers, existing systems
will do that; if they want to treat them as physical quantities, then this paper explains how.

76

For most purposes such variables (or functions) behave just like any other variable of dimensional type.
The usual defaults and coercions would still apply on input and output. A few differences might be
visible:

• If the variable’s numeric representation had low precision (if it held only integers, for example),
assignment to it would introduce visible rounding or truncation. Even if all variables have low
precision, so that visible rounding and truncation are the norm, associating a particular unit
with a variable may cause the rounding or truncation to occur for different values, or in a
different direction.

• Having the units implicit might make it possible for the system to conserve storage. On the other
hand, storage defaults could make all units implicit, in which case no difference would be visible.

• Depending upon where such a variable resided in the type hierarchy, it might be compatible with
the type number. In that case expressions like “myHeight+3” would be legal.

>>ToDo 59: More implementation considerations.

Possibly make statements about storage. Assignment, equality, arithmetic obey
compatibility rules. Rules for input/output already described in section on PQEs.
Coercion to/from non-PQ types, especially from literals.

20.2 Operating with Dimensioned Data

Operations on dimensional data are governed by the type constraints on the dimensions involved.
Units participate indirectly; they identify the dimensions involved, and they may cause some conver-
sions to be applied during computations.

20.2.1 Compatibility

Common operations behave differently for dimensioned data. For example, while “2+5” is a legal
expression, “2 miles + 5 hours” is not. These changes affect operations such as assignment, comparison,
and arithmetic. We describe only binary operations here, but the concepts can be applied to unary or
n-ary operations as well. The following questions arise:

• Which operations should be considered?

• Which combinations of dimensioned and undimensioned operands are legal for each operator?

• What is the dimension of the result?

• How is the operation to be performed? The answer may involve:

– Ordinary operations on the numeric components.

– Implicit units conversion [Section 20.2.3].

– Special operations (e.g., on vector dimensions [Section 26.3]).

There is a spectrum of possible approaches to these questions:

1. Simple, fixed rules.

2. Rules dependent on particular combinations of dimensions and operations.

3. More sophisticated rules taking other context into account.

4. Modifiable rules which can be extended and tailored by users:

– Editable rules.

– Special operations to override the rules, e.g., casting or coercion functions.

77

We estimate that level 1 is adequate for basic dimensional support, or level 2, if one is working with
quantities like temperature [Section 6.2].

Basic dimensional support is based on these fixed, simple rules:

• Assignment and comparison are valid between terms having equivalent dimensions.

• Addition and subtraction are valid between terms having equivalent dimensions. The resulting
dimension is the same.

• Multiplication and division of any dimensioned term by any dimensioned or undimensioned term
is legal. The dimension of the result is determined by algebraic reduction of the canonical forms
of the dimensions of the terms, possibly yielding a derived dimension.

Simple rules such as these are inadequate in several ways:

• They do not account for all operations, e.g., exponentiation, absolute value, vector operations, etc.

• Equivalence of dimensions is not always well-defined.

• The generalizations are not always valid. It may not be meaningful to add two dates, or two
temperature points, nor to multiply a date or temperature point by a constant.

• There may be circumstances requiring rules to be relaxed, as in the computation of certain
metrics. For example, a shipping company might accept only parcels for which the length + girth
in inches, plus the weight in pounds, is less than 130.

More elaborate rules might take the form of a matrix of dimensions and operators, such as:

D1 and D2 stand for the dimensions of the operands; one operand might be undimensioned. The matrix
might have additional operators as necessary, such as < and >, etc. Each cell in the matrix would
contain the following information:

• the legality of the operation

• special operations that might have to be performed (if the operation is legal)

• the dimension of the result (if the operation is legal)

It may be desirable for such a matrix to be editable by users, particularly for newly defined dimensions.
Addition of new operators is also desirable.

>>ToDo 60: Need more work on matrixes.

Further work is needed to determine whether simplifications of this matrix form
would be useful. The role of this matrix should be expanded upon.

When dealing with both arithmetic operators and assignment, the legality of a statement can be deter-
mined by the following steps:

• Can the expression on the right hand side of the assignment be formed? That is, are the dimen-
sions compatible for the operators used?

D1 D2 Operators

+ - * / assignment comparison

78

• If so, is the resulting expression compatible with the destination on the left hand side of the
assignment?

For example, the legality of Mass ← Length + Length is checked as follows:

• Length + Length is legal, and gives a Length.

• Mass ← Length is illegal.

• Therefore, the operation is illegal.

Notice that this matrix may need to be extended to handle generalized units. For example, 360° = 0°
in some angular measures.

20.2.2 Mapping Between Physical Quantities and Physical Quantity Expressions

>>ToDo 61: Needs work.

Revisit this section, answering questions where possible. Defer representation
issues to Section 29.3.

Simple Units

Mappings between physical quantities (i.e., their internal representations) and physical quantity
expressions can be obtained by explicit functions. Defaulting mechanisms to simplify the language
constructs are described in Section 22.

A dimensioned attribute, such as the height function defined on persons, returns a physical quantity
in some unspecified internal representation. For illustrative purposes, we might write

height(Bill) = |↔|

where we use |↔| to denote a length. The value may be stored internally as a PQE in some units, but
that is a matter of implementation. The semantics of the height function is that it returns a length, not
a PQE.

There are no inherent units associated with a length. The result of height(Bill) can be compared with
other lengths, multiplied by a constant, and otherwise manipulated without specifying anything about
units. For example, one can add 6 inches to it without specifying the conversion between the units in
which height(Bill) was entered/stored and inches.

However, this result cannot be externalized, i.e., displayed or exported, without conversion to an SPQE
such as “6 feet”. For this purpose, functions are needed for mapping a length into an SPQE. They can
be provided as a family of functions, one for each unit, e.g.,

feetSPQE(Length) → SPQE,

inchSPQE(Length) → SPQE,

…

or as a single generalized function

measure(PhysicalQuantity, Unit) → SPQE.

A request to display the height of Dan in feet might then be expressed in one of the following forms:

display(feetSPQE(height(Dan)))

display(measure(height(Dan),Feet))

The number function [Section 19.1] could be used to display the numeric portion alone, as in

display(number(feetSPQE(height(Dan)))).

79

The data type used to represent the numeric part of an SPQE can be specified in the same way that
the units are specified: by expanding the family of functions or through additional parameters to the
“measure” function. Though considerable sophistication is possible (see Section 17.1.2), for many
purposes it is sufficient simply to name one of the system’s underlying numeric types, e.g., integer,
double, etc. The numeric type for display is independent of the numeric type for storage. In general,
both need to be specified, though a system of defaults can relieve most of the work most of the time (see
Section 22). We omit the numeric type specification in the rest of this paper.

>>ToDo 62: Numeric representations.

Are we really convinced that the numeric representation can be handled so simply?
Stephanie is not.

Defaulting conventions [Section 22] could be used to establish feet as the default unit for “casting” a
length into an SPQE, so that height(Stephanie) is expressed in feet by default in an output context,
such as display. A request to display the height of Stephanie might then take the simpler form

display(height(Stephanie)),

with the understanding that it will be mapped into an SPQE in feet.

[We could define measure(x,unit) as concat (“(“, unit(x), unit, “)”).]

Other Units

As illustrated above, mappings to PQEs can be provided as a family of functions, one for each unit, or
as a single “measure” function taking the unit as argument.

When the units are not simple, the family of functions explodes combinatorially with the various
combinations of simple units involved. Thus, for Speed, there would be functions for

feet_per_secondSPQE(Speed) → SPQE,

inch_per_secondSPQE(Speed) → SPQE,

mile_per_secondSPQE(Speed) → SPQE,

…

feet_per_hourSPQE(Speed) → SPQE,

inch_per_hourSPQE(Speed) → SPQE,

mile_per_hourSPQE(Speed) → SPQE,

…

The number of functions is even larger for vector dimensions, being the product of the number of func-
tions available for each component. Thus the family of functions for velocity would be of the form

feet_per_second_compasspointVPQE(Velocity) → VPQE,

feet_per_second_degreesVPQE(Velocity) → VPQE,

…

It would be simpler to use a single “measure” function rather than a family of functions. However, this
requires the ability to specify compound and vector units as arguments.

Whenever a unit name is constructed by implied multiplication or division [Can we construct them
any other way?] , there is risk of duplicating a predefined unit name, as in “foot-candle.” This is an
instance of the problem of ambiguous unit names, and is not in the scope of this paper.

80

Inverse Mappings

In principle, inverse mappings from PQEs to physical quantities are also needed. Strictly speaking, an
assignment of the form

height(Bill) ← (6 feet)

cannot be carried out directly, since “6 feet” is an SPQE, while height(Bill) requires a length. The
precise expression would be of the form

height(Bill) ← feetSPQE-1(6 feet).

However, the treatment of PQEs as expressions [Section 19.1] eliminates the need for such explicit
inverses. In the absence of a quoting context, the SPQE “6 feet” is treated as an expression which eval-
uates to a length, so that the assignment can in fact be legally written as

height(Bill) ← (6 feet).

>>ToDo 63: A type checking question.

In order to do static type checking, we probably have to introduce dimensional
subtypes of PQEs, so that we know that height(Bill) is being assigned a Length PQE
and not a Time PQE.

Substitutability

The conventions described above imply:

• A PQE may occur wherever a physical quantity of the same dimension is expected, since the PQE
will be evaluated to such a physical quantity.

• A physical quantity may occur wherever a PQE of the same dimension is expected if a suitable
default mapping is in effect. Alternatively, the physical quantity may be wrapped in an explicit
mapping function.

20.2.3 Unit Conversions

Conversions can be done automatically as needed between compatible PQEs when evaluating expres-
sions. Not only can the conversions between units be automatic, but the internal units used for the
calculation of the expression need not be constrained to be the units of the PQEs in the expression, nor
to the units of the result. For example, it is possible to calculate the sum of two PQEs with units of feet,
and produce a result in feet, but to do the actual addition in meters. In Section 29.3.1 we discuss the
effects of different choices of unit for calculations and comparisons.

The conversion factors between units can be time-dependent or asymmetrical, as in currency conver-
sions. Common usage employs the conversion rate in effect at the time each conversion is done. We
know of no standard way to request other rates.1 The measure of some quantities like uranium or
savings accounts can change with time, but this is because of changes in the quantity, not because of
a time-varying unit mapping.

Sometimes the prevailing set of conversions in a particular application is not consistent with the “true”
conversion. For example, rent is often calculated on the basis of a 30-day month and a 12-month year,
yielding a 360-day year. This anomaly, however, is simply confusion among different units with the
same name (conventional months vs. 30-day months, etc.). Similarly, rent in February is generally the
same amount as rent in March, although the months have different numbers of days. This gives a
varying per-day rent, depending on the length of the month. The anomaly here is simply that the per-
day rent varies with the month, however, not that there is anything unusual about the units involved.

1. Though a syntax could be invented, similar to “1960 dollars.”

81

We discuss the representation of units in Section 29.3.1. Conversion among non-numeric units is diffi-
cult. It is discussed in Section 34.11.

20.3 Input/Output

20.3.1 Input of Physical Quantity Expressions (PQEs)

Users can present PQEs using any units that a system knows about. The input system must know:

• what to do if the unit is missing or ambiguous

• what to do if the number is missing

• how much precision is intended in the number

Systems may also be expected to “know” about units with SI prefixes [Section 19.5.2]. In addition,
systems may wish to allow implied multiplicative combinations of known units. For example, if a
system knows about “feet” and “second” but not “feet/second,” users may still expect the system to
understand “6 feet/second,” and infer the appropriate dimension (Length/Time) and unit (foot/second).
In a similar way, the PQE “0.3 watt-hours” implies multiplication. Known units take precedence over
implied multiplication: 1 foot-candle is not 1 foot × 1 candle.

>>ToDo 64: Dan, can you suggest a better example?

An Additive PQE can be hard to tell from a Vector PQE. Users may be required to use special punctu-
ation for one or the other, so that a system can tell them apart. Once it is known which is being
presented, each can be treated as the appropriate collection of SPQEs.

There is a loose notion of well-formedness for APQEs. Let the elements be e1, e2, …en, n>1, and their
units be u1…un. Then,

• All elements belong to the same dimension.

• For 1≤j<n, Number(ej) is an integer and is ≥1. This forbids “2.5 years, 7 months” “2 years, -4
months, 6 days.” It also forbids “0 years, 0 months, 6 days” and “2 years, 0 months, 6 days,” which
might be legal in some contexts.

• Number(en) > 0. This allows the final element to be a non-integer, but still requires it to be
strictly positive.

• For 1≤j<n, ej+1 < uj
-1(1). I.e., each quantity should be <1 of the unit on its left (remember, feet-1(3)

is the length denoted by “3 feet.”) This forbids “2 years, 12 months, 6 days.”

• For 1≤j<n, uj+1
-1(1) < uj

-1(1). This is the “coarse, fine, finer” rule. Note that it forbids “2 years, 2
years, 4 months, 6 days.”

A system may decide to check these rules on input and obey them on output. Note that there is no way
to express a negative quantity as an APQE obeying these rules. Systems will need a syntax for
expressing the additive inverse of an entire expression, and it will have to distinguish “<-6 feet, 3
inches>” (which is probably an error) from “-<6 feet, 3 inches>.”

20.3.2 Output of Physical Quantity Expressions (PQEs)

There are in general several ways to output a physical quantity as a PQE. Several dimensions may be
candidates—this is discussed under Specialized Dimensions, in Section 23.4. Given a dimension, any
of the associated units is a candidate, and the choice may be influenced by defaults and by human
factors. For example, “ohms” may be preferred to “volts/ampere,” or “watt-hours” to “newton-meters.”
This is discussed in Section 21.1 and Section 22.

82

If a quantity is to be expressed as an Additive PQE, then one needs to be constructed, possibly following
the rules given in the previous section. Even obeying those restrictions, however there is more than
one way to express a given physical quantity as an APQE. This can be an issue if repeatability across
implementations is desired.

A system to support output of APQEs should let users (or administrators) indicate coarsest and finest
applicable units, signal when values are to be presented as APQEs, and possibly specify families of
units (to avoid expressions like “1 liter, 1 quart, 2 pints, 3 ml”).

21 Extensibility

21.1 User-Defined Dimensions

While a system to support dimensioned data would doubtless be preconfigured to support some set of
dimensions (perhaps the SI set, plus money), it could also allow the set of dimensions to be extended.
It might even allow the preconfigured dimensions to be overridden or deleted. Note: money is the
dimension; the various currencies are its units. A logical base configuration would be the SI set of
dimensions, together with their base units. A system might also have the “money” dimension precon-
figured, with the local currency as its base unit.

The definition of a dimension requires:

• One or more names.

• Status as reference or derived.

• If derived, the dimension(s) it is derived from and the type of derivation (multiplicative combi-
nation, specialization, vector).

• A unit. Additional units for this dimension will be defined in terms of their conversion to and
from this unit. It will also be used for storage and I/O until default units are specified.

A system might also give a derived dimension all the compound units implied by its canonical
form. For example, Acceleration might have all the units implied by Length/Time2, such as
miles/hour2, feet/sec2, etc.

Note that it is not necessary to define derived dimensions such as Speed, since basic dimensional
support already addresses multiplicative combinations of reference dimensions. It may be useful,
though, to associate particular names or units with a frequently-used combination. In some contexts,
for example, it might be convenient to define Acceleration, and specify “gravity” as one of its units.

A further level of support would allow users to define aggregates, quasi-dimensions, and point/interval
pairs.

21.2 User-Defined Units

One might also like to add new units, associated with existing dimensions. The definition of a unit
requires:

• The associated dimension. Note that this must already be defined.

• One or more names. Although unit names must be unambiguous (see Section 17.1.3), there is no
harm in having multiple names for a single unit. Mention I/O issues in Section 5.

• Conversions to and from other units (see Section 20.2.3). Depending upon the way the system is
organized and the freedom it permits, it may be possible to specify the conversion in only one
direction, or conversion to/from only the reference unit. Note that the machinery for adding a
unit needs to be expressive enough to define the conversion between simple and compound units.

83

Aliases for existing units (such as “fps” for “feet/second”) may be specified as such, or defined sepa-
rately, with a conversion factor of 1.0. A system might be preconfigured with the SI special names for
derived units, such as the joule, hertz, etc. [1]

22 Default Units and Data Types
There are a number of places where defaults would ease the burden of having to say something like
“measurement-in-feet-displayed-as-an-integer”. In addition, users may wish to have a system act as
though amounts of money were always stored in U.S. dollars. A system could set defaults separately
for input, output, and storage, and defaults could cover units and numeric format.

22.1 Units

Units can be defaulted in the following places:

The table is in order of increasing precedence. For example, if we had the following input defaults in
the system,

default for Length is feet

default for function height is inches

default for Stephanie as argument of function height is cm

default for Bruce’s session is meters

then we would get the following defaults:

Two additional levels of defaults could be

Default Level Input Output Storage

Dimension

Function or variable

Function/argument pair

User Session

Manual Override

Function Call User Units

length(myCar) ← 10 Bill feet

height(Bill) ← 72 Stephanie inches

height(Stephanie) ← 150 Bill cm

height(Bruce) ← 1.8 Bruce meters

height(Dan) ← 1.9 yards Bill yards

height(John) ← 1.7 yards Bruce yards

84

• system-defined by dimension, which would be lower precedence than the user-defined by dimen-
sion (described above)

• by argument object, regardless of the function in which the argument appears. For example, all
the measurements taken in Dan’s house might be in feet, but all measurements taken in Bruce’s
house might be in meters.

There are even more possibilities. For example, “as supplied” is a meaningful default for output and
storage units. Similarly, “as stored” is a meaningful default for output. This is not meant to be a
complete list of the default options, but it gives the flavor of what could be provided.

>>ToDo 65: A question.

[SL:] This discussion of default units was written with reference dimensions in mind.
Does this mean that we are proposing to let derived and vector dimensions “inherit”
their defaults from the defaults of the reference dimensions? I think this would be a
bad idea - for one thing, this wouldn’t let us say that ohms should be used instead
of volts/amp. We should extend this default system to derived and vector dimen-
sions, so that defaults can be specified for ALL dimensions. (Maybe reference
defaults can serve as “default” defaults.)

22.2 Numeric Format

Just as one can define defaults for the units part of a measurement, one can define defaults for the
number part of a measurement. For example, we might want all lengths to be displayed in scientific
notation, and all prices truncated to two places after the decimal place. Such defaults could use the
same precedence rules and framework as described above. A remaining issue is how to provide such
syntax.

22.3 Numeric Type

One could also specify defaults for the numeric type into which the numeric part of measured quanti-
ties will be stored. However, this is semantically separate from defaults for units and numeric format
(I/O), as storage is inherently implementation-dependent.

23 Specialized Dimensions
It was noted in Section 8.2 that specialized dimensions behave like what the relational algebra calls
“domains” [12, 14]. This behavior need not be implemented in SQL [<Reference>] , nor by anything
called “domain.” For an implementation in C++, see Section 34.10.

23.1 Defining Specialized Dimensions

The definition of a specialized dimension includes:

• Its name

• The dimension being specialized. This can be a reference dimension, a multiplicative combina-
tion of reference dimensions, or a previously-defined specialization.

• The unit(s) associated with this specialization (which may simply be all the parent’s units)

There is a tradeoff in the association of units with specializations. On the one hand, if units are
uniquely associated with specializations (for example, if “foot-pounds” is associated with Torque but
not with Energy or Force × Length), then it is possible to infer the intended specialization from the
user’s choice of units on input, and to express it through the choice of units on output. On the other
hand, if a unit can be associated with more than one specialization, or with a specialization and its
parent, then users gain flexibility. For example, it is convenient to be able to measure both (general)

85

Length and (specific) Width in inches, or all ratios of the form Di/Di in “percent.” We know of no way to
choose one half of this tradeoff over the other.

One question arises if a unit can be associated with more than one specialization, or with a specializa-
tion and its parent: we stated in Section 17.1.1 that units are uniquely associated with dimensions.

>>ToDo 66: Questions about units.

Do we need to change that rule here? If we keep it,

-the effect is as if we made a copy of the unit for each specialization, with the same
name and conversion functions, but with a different identity and dimensional asso-
ciation. We can perform compatibility-checking, conversion, I/O, etc., but we have
two different units with the same name. This can make administration difficult.

If we break it,

-then a unit can be associated with more than one dimension (hopefully, all of them
members of a tree rooted at the same parent dimension). We need to know the
dimension of a PQE for compatibility-checking, but logically we are allowed to know
that directly, without reference to its unit.

-The original meaning of unit as a physical instance is lost if something is required
simultaneously to be a torque and an energy. We don’t need that here, but it’s phys-
ically unsatisfying.

I can’t see any other difficulties.

23.2 Declaring Specialized Dimensions

>>ToDo 67: To be completed.

How to declare a variable to be of a particular specialization, and how to interrogate
the specialization of an already-declared one (in fact, we should be able to interro-
gate its whole path up/down the type tree, so that we can correctly label variables on
output).

23.3 Operating With Specialized Dimensions

>>ToDo 68: To be completed.

23.4 Input/Output

Just as with ordinary dimensions, specialized dimensions are represented on input and output by
PQEs. However, it can be ambiguous which specialization is being represented. This is an issue on both
input and output. If, as mentioned above, the applicable units are uniquely associated with a special-
ization (or with the parent), then the choice of unit resolves the ambiguity. If not, then the specializa-
tion must be supplied explicitly. We do not propose any particular syntax for this.

>>ToDo 69: What is the type of “3 feet”?

What is the type of “3 feet”? Several possibilities have been suggested:

• It is strictly of type Length. Explicit casting is required to use it as a specialization:

xWidth ← L2W(3 feet)
or
xWidth ← MakeWidth(3 feet)

86

• It is recognized as belonging to the “family” of Length and its specializations, being compatible
with any of them.

Another point. We said that specializations inherit units, hence the unit set for Speed
includes all pairs of the form Length-unit/Time-unit (in addition to any unique units
of its own, like mph). Therefore the question we asked about “3 feet” also applies to
“3 feet/10 seconds”. Is that compatible with Speed? Is the answer different for “0.3
feet/second”?

24 Quasi-Dimensions

24.1 Defining Quasi-Dimensions

The definition of a quasi-dimension includes:

• Its name

• The set of dimensions which it spans

• The rules for converting quantities among those dimensions

Since it corresponds to no single canonical form, a quasi-dimension is not itself a dimension. [Give a
better reason.] Its name could be the name of an ordinary dimension without ambiguity, although
users might find this confusing. No units are associated with a quasi-dimension. It is a subtype of Phys-
ical Quantity, but its children are related to it by [what?] , rather than by subtype relations.

The dimensions spanned by a quasi-dimension retain their places in the type hierarchy, their units,
etc. A dimension may be the child of more than one quasi-dimension, and quasi-dimensions may them-
selves be grouped into higher quasi-dimensions. It is worth noting that specialized dimensions are
defined by their relation to their parents, while quasi-dimensions are defined by their relation to their
children.

24.2 Declaring Quasi-Dimensions

>>ToDo 70: To be completed.

How to say which QDim(s) a variable belongs to, and how to interrogate that same
information. Is QDim membership static or dynamic?

Physical Quantity

Time
Volume/ Mass/

Molarity LengthVolume Volume

Concentration

Subtype

Membership in
quasi-dimension

87

24.3 Substance-Dependent Conversion Factors

>>ToDo 71: Re-check continuity, relevance.

More generally, it might be useful to provide contextual defaults for other information in addition to
the substance involved. In practice, the free interchange of mass and weight is justified by assuming
that the measurement was done in a gravity similar to the Earth’s. Other conversions are facilitated
by assuming standard temperature, pressure, altitude, and other such characteristics. Yet another
contextual default concerns default data and implied units; salaries are often expressed simply as
money, with the implicit understanding that it is a Money/Time rate having an assumed time interval,
such as a month.

24.4 Operating With Quasi-Dimensions

24.5 Input/Output

There is no such thing as “the quasi-dimension of a quantity” — all the properties of any individual
quantity are associated with its dimension. Therefore, no special treatment needs to be given to the
input or output of a quantity whose dimension is spanned by one or more quasi-dimensions.

25 Point Dimensions

>>ToDo 72: To be completed.

25.1 Defining Point Dimensions

Define new point dimension and associate units. State related interval dimension.

25.2 Declaring Point Dimensions

25.3 Operating With Point Dimensions

25.4 Input/Output

26 Vector Dimensions

>>ToDo 73: To be completed.

26.1 Defining Vector Dimensions

26.2 Declaring Vector-Dimensioned Data

Declare which vector dimension. Are coordinate systems associated with dimen-
sions, or with variables? (I think the treatment of coordinate systems should parallel
the treatment of units: associate with dimension, so that variable is of type “dimen-
sion,” rather than type “dimension-in-coordinate-system”).

26.3 Operating With Vector Dimensions

26.3.1 Compatibility

Two vectors are compatible for assignment, comparison, and binary arithmetic operations if and only
if they have the same dimension. Inner and outer product have the usual requirements on rank. Inner
product requires that elements to be added are of the same dimension. Operations between a scalar
and a vector will be done element-by-element; the vector and scalar are compatible if each element of
the vector is compatible with the scalar.

88

26.3.2 Coordinate Transformation

Operations between vectors require that the vectors be in the same coordinate system (this is parallel
to the requirement for operations between SPQEs, that the units be the same). Most operations do not
require any particular choice of coordinate system; those that do are specified below.

26.3.3 Comparison and Assignment

These operations are done element-by-element. The individual elements are treated just like any other
SPQEs: compatibility is tested, unit conversion is performed as needed, etc. All this is assumed in the
rest of this discussion.

26.3.4 Arithmetic

Vector addition and subtraction are done element-by-element.

>>ToDo 74: Questions about vector arithmetic.

There does not seem to be any notion of element-by-element multiplication or division—is that
right? (Multiplying/dividing by a scalar is as close as it comes - Stephanie).

Multiplication by a scalar is done element-by-element. Since the effect of this operation depends upon
the coordinate system, a vector is first converted to its reference coordinate system (if necessary). We
hypothesize that this will usually be the Cartesian coordinate system.

The dot product of two vectors is computed in the usual way, after first converting each vector to its
reference coordinate system (is this right?) . Since the dot product involves addition, all elements to be
added must be of the same dimension, and that is the dimension of the result.

The cross product of two vectors is also computed in the usual way, after first converting each vector
to its reference coordinate system. Its result, not being a vector, is outside the scope of this discussion.

26.4 Input/Output

27 Aggregate Dimensions

>>ToDo 75: To be completed.

27.1 Defining Aggregate Dimensions

27.2 Declaring Aggregate Dimensions

27.3 Operating With Aggregate Dimensions

27.4 Input/Output

28 Accuracy, Precision and Context

>>ToDo 76: To be completed.

Say what such support would consist of. Perhaps move some text from Section 34.5
and Section 34.6.

29 (Miscellany)

>>ToDo 77: Where should the stuff in this section go?

89

29.1 Use of Systems

What it would be like to use such a system. What we’d say to it. What we’d see. Kinds
of “user”. What would ease the life of each kind of user.

29.2 Language Issues

Dependency on evaluation order. Binding of unit to quasi-dimension (convenience/flexibility tradeoff).

29.2.1 Recommended Functions and Features

<Haven’t decided on this, but it would be a real feature of the paper (or a separate paper)>

29.3 Representation Issues

This list is imported from elsewhere. Weave it into the text.

1. Define plausible storage formats and techniques, with appropriate language for management.

2. What determines units in which data is stored? Other efficient storage formats?

3. Need to record original input form?

4. Note that there are infinitely many derived dimensions, so the type system should not assume it
has a table of all dimensions.

29.3.1 Unit Conversion

29.3.1.1 Pairwise Conversion

Recall that a unit maps from a physical quantity to a number. Although some computing systems actu-
ally perform those mappings, they are outside the scope of this paper. We assume that physical quan-
tities can be expressed somehow as PQEs, and are only concerned with converting them to other PQEs
using other, given units.

The conversion from one unit to another can be represented in a variety of ways. Some candidates are:

1. ψ = αx

2. ψ = αx + b

3. y = f(x), where f is a user-written function

The first two can be automatically inverted, while the third cannot. The first form is inadequate to deal
with quantities like date and temperature. The second covers a wide variety of common units, but only
the third can provide unusual mappings, such as abs(x), and others discussed elsewhere in this paper.
These are:

– time-dependent conversions (used in converting currencies)

– asymmetric conversions (also used in converting currencies)

– 1/x (useful in converting fuel consumption to fuel efficiency)

– log(x) (useful in representing gain in db). Note that transcendental functions (generally, any
mapping which is equivalent to a power series) can be applied only to dimensionless quanti-
ties, since otherwise the terms of the series are not compatible. However, one still might want
to represent them, as there are many interesting dimensionless quantities.

– Months, days, and weeks corresponding to a 360-day year

We estimate that the second form is adequate for basic dimensional support.

90

Stephanie says: Be careful here - logarithmic units keep coming up as both impor-
tant and difficult. We need to make sure that we understand the issues, and that we
can handle logarithmic units using the y = f(x) form.

Bruce says: note that quantities expressed in logarithmic units violate the basic rule for inclusion in
our discussion: measure(a#b) = measure(a) + measure(b). On the other hand, they are isomorphic to
quantities which do obey it. I’m inclined to include them, but to note that quantities expressed this way
need special treatment (either coercion into our domain, or special operators).

Schemes 1 and 2 above assume symmetric conversions, reflecting the notion that the amount of a quan-
tity is not affected by the units chosen to express it. If a system stores conversions in a form which can
be automatically inverted, this simplification can cut in half the effort to teach the system about a new
unit, and the space to store conversion factors. The conversion mechanism could be generalized by not
requiring the forward and reverse mappings to be inverses of one another. Someone who goes to the
bank, for example, and converts currency from dollars to pounds and back, will wind up with less
money than when he started. The conversion mechanism could also be generalized by allowing a
mapping in one direction only (we can think of no use for this).

Conversion to or from a unit whose range is non-numeric is discussed in Section 34.11.

Again, non-numeric quantities are outside our domain of discussion. I’d like to keep
Section 34.11, but note explicitly that it’s outside our domain of discussion.

29.3.1.2 Conversion Within a Family

Consider the conversion graph for a dimension, in which a vertex corresponds to each unit in the
dimension, and there is an edge from vertex ui to uj if we know how to convert an SQPE with units ui
to an SPQE with units uj. In this discussion we assume the graph is undirected (but see Section
29.3.1.1).

A system can enforce a “star” configuration for the conversion graph:

• One unit per dimension is distinguished.

• Every time a unit is added, the conversion to and from the distinguished unit must be specified.

• No other conversions are specified.

This approach yields a connected graph with a minimum number of edges, but the resulting system
sometimes uses two operations to convert from one unit to another, costing time and precision. If the
system allows fewer conversions to be specified, the graph can become partitioned: it is then not always
possible to convert from a unit to any other. We do not consider such systems further. If the system
allows more conversions to be specified, then there is more than one path between some pair of units.
In this case, a choice has to be made among the paths. The choice can be made to preserve the
maximum precision of the conversion, to take the minimum time, or to optimize some other metric.
Performance problems can occur if a particular conversion is common and the selected conversion path
is long; providing the direct conversion is a solution. Another solution is to use a fully-connected graph,
by calculating all direct conversion paths automatically.

The choice of unit used as the center of the star can have an externally-visible effect on precision and
performance. The effect on precision is due to the fact that only a finite number of values can be repre-
sented exactly, and it is influenced by more than just the number of digits available. For an example
which is easy to visualize, we’ll use a very coarse resolution. Consider a system which represents only
the odd integers, and which uses the meter as its internal unit of length. If we present a length of 40
feet to such a system and ask for it back, again represented in feet, what happens? The length is stored
internally as 13 meters, and converted on output to 43 feet. Note that this is larger than the original

91

length. If the same system used the yard as its internal unit of length (thus changing the precision only
slightly), the same length would be reproduced as 39 feet, smaller than the original length.

A system which represented only the even integers would exhibit similar behavior, but the choice of
internal unit would have the opposite effect: converting to meters and back would reduce the length,
while converting to yards and back would increase it.

Our example intentionally uses coarse resolution, but an example of this sort can be constructed for
any choice of unit and numeric resolution. Whether this behavior is acceptable or not is application-
dependent. Designers may wish to make the choice of unit used internally a configuration parameter.

29.3.2 Precision and Context

If we use a tuple form of implementation for PQEs, then we risk overloading and redefining the tuple
equality and assignment operators if we take attributes like precision and context into account. (This
is the same problem we ran into when comparing SPQEs for equality.)

29.3.3 Things to Represent

29.3.3.1 Physical quantities

Have we already said enough about PQEs, or is there more to say here?

29.3.3.2 Dimensions

Want to represent compound dimensions as product of powers of reference dimen-
sions. That suggests assigning consecutive integers to reference dimensions. Also
need to store their names, and names of their aliases. Probably want links to asso-
ciated units.

29.3.3.3 Units

Probably represent:

• Associated dimension.

• If a star conversion structure, whether this unit is the center; if not, conversions to/from center.

• If not a star, conversion to/from each other unit for this dimension.

• Possibly the precision and accuracy of each conversion.

• Name, aliases.

29.3.3.4 Conversions

Adequately discussed above?

29.3.3.5 Coordinate systems

Haven’t thought much about this. Is it enough to just provide the conversion matrix
to/from Cartesian Coordinates for each one?

40 ft. Yards Meters

Odd
integers

39 ft. 43 ft.

Even
integers

42 ft. 39 ft.

92

29.3.3.6 Numbers

By this we mean the numeric part of PQEs. We want to offer all the built-in numeric
types, certainly. A system may wish to support richer numeric types than the under-
lying hardware supports (e.g., ratios, bignums), but we can treat those as if they are
built-in. t makes sense to represent explicitly the precision of each numeric type
(assume accuracy=precision).

Can either have a separate section on non-numeric PQs, or note that they are outside our domain of
discussion.

29.3.3.7 Precision, Accuracy

Currently done in various ways [2, 24, 30]. Choice may be fixed, administrator-
configurable, or user-configurable. Arithmetic between two finite-precision quanti-
ties ideally needs a covariance matrix, which is associated with the pair, not with
either one. Have not thought about how to specify that.

29.3.4 Levels of representation

29.3.4.1 Input

29.3.4.2 Output

29.3.4.3 Storage

Note that the numeric type chosen for storage of PQs may have a visible effect on
the value and precision. This is a side-effect of the representation, and needs to be
described so. There may be a semantics that associates a numeric part with a dimen-
sion or unit (e.g., count or percent), but we haven’t discussed it.

29.3.5 Additive Physical Quantity Expressions (APQEs)

Is is tempting to use the VPQE format to represent APQEs. For example, we might like to represent
the APQE “5 feet, 5 inches” as the tuple <(5 feet), (5 inches)>. However, this representation is ambig-
uous, as it could represent either a scalar length of 65 inches or a point in 2-space. A system need not
represent APQEs internally; but if it does, the representation must distinguish them from vectors.

The functions defined on APQEs are a mixture of those for vector PQEs, scalar PQEs, and neither:

• Dimension() returns a single dimension.

• Number_of_Elements() returns the number of elements.

• Unit() and Number() return a list (not a vector).

93

Since APQEs share properties of both scalar and vector PQEs, their taxonomy is ambiguous:

Since a system need not represent APQEs internally and we see no compelling reason to make the
choice either way, we have left it unmade.

29.3.6 Other Representation Issues

The following text is imported from elsewhere. Weave it in here and above.

We said earlier that there are three attributes of an SPQE: dimension, units and number. It is rela-
tively straightforward to determine representations for dimension and units (once the names of dimen-
sions and their associated units are established), as we can simply use the string representation of the
appropriate name. Alternatively, the unit component might be stored as an OID. There is also the
option of omitting the units, and storing the PQE as only a number, although this might lose informa-
tion if the units used were not the default units. In any case, most of the work to be done relative to
representation surrounds the “number” attribute of a PQE.

Let’s consider how we would like to use a PQE. We would like to be able to view it, to store it, and addi-
tionally, we would like to be able to use a PQE for input when a physical quantity is required. For
example, we might like to see the length of my car in scientific notation, and we might want to store
the numeric component as a 64-bit floating point number. We might like to tell the system how long
my car is by typing in something like “8.6667 feet”.

The example of the length of my car assumed some sort of floating point representation of the associ-
ated number, but there is no reason that integers can’t be used to represent magnitudes of physical
quantities as well. Perhaps we might record temperatures in whole degrees only. We might even
choose to view or store the length of my car in whole feet. (Clearly this would have an effect on the
precision of the measurement we record, but it should be possible.)

The point here is that just as a physical quantity has no inherent units associated with it, a PQE has
no associated numerical type (integer, float, double, etc.) associated with it. In fact, we can consider the
specification of such a numeric type to be a mapping from a PQE to a particular representation, just
as we consider a particular unit to be a mapping from a physical quantity to a PQE.

We have not yet addressed how these representation specifications are to be done. However, storage
specifications will be handled separately from other issues, as we wish to separate interface from
implementation as much as possible.

The remaining text in this section is taken from Bruce’s memo on I/O, slightly modified to fit here. We
may want to fold it into the discussion above.

With respect to I/O, our recommendations here should minimally accomplish the following:

?

PQE

additive
PQE

vector
 PQE

scalar
PQE

?

94

• Convince us and others that the I/O system allows input of all information required by the under-
lying machinery. For example, on input we need to know dimension, unit, and number. We need
to determine whose responsibility it is to make sure that the underlying machinery knows the
intended dimension. The input system must know:

– what to do if the unit is missing or ambiguous

– what to do if the number is missing

– how much precision is intended in the number

and we should make clear how these things are determined. We have a suggestion for how to
handle missing units (see Section 22), and we can make other such suggestions for the number
and precision information. Users must be able to ask for casts and operations on physical quan-
tities; we probably have no opinion about how those should be requested, but it makes sense to
list the casts and operations.

• Convince us and others that the I/O system allows output of all the information produced by the
underlying machinery. For example, on output, we want to deliver a unit and a number, and
possibly a dimension. There may be times when the I/O system will want to omit either, and this
should be mentioned. Also, we may want to communicate the amount of precision in a number.
Further, there is usually a choice of units to be output, and we may offer suggestions on the
choice. Similarly, there is sometimes a choice of ways to specify a unit or dimension (e.g., “1/ohm”
vs. “ampere per volt”). This subject is hard, like printing an algebraic expression in “simplest”
form, but we may still have some advice.

• Where we have noticed non-obvious things useful to someone building a working system, this
section should mention them.

(Actually, I think that we should mention implementation issues wherever they come up,
whether it’s in I/O or elsewhere. Alternatively, we could collect all of these implementation
observations in one section.)

• If we foresee functions common to the underlying machinery and the I/O system, we should
mention those.

• We don’t have to build the I/O system, nor even design it, but we should convince ourselves and
others that it is possible to build a sensible implementation with the necessary capabilities.

29.3.7 Specialized and Quasi-Dimensions

We speculate that some aspects of the behavior of such specialized dimensions might be modeled using
Ada’s derived types (but see [19]), C++’s private inheritance, and the relational model’s domains [12,
14]. See Section 34.10.

29.3.8 Expressions

One would like to be able to construct a literal (a PQE?) of any type supported by the system. For ordi-
nary dimensions one simply constructs an ordinary PQE. For specialized dimensions, the language
designer has a choice:

• Require the applicable units to be partitioned among the dimension and its specializations. Then
the choice of unit in the PQE determines its type.

• Define the syntax of a PQE to allow an optional explicit dimension. If it’s present, then the PQE
is of that dimension. Note that its type is allowed to be that of any of the parent dimensions; by
convention we say that it is exactly the given specialization.

There is an issue in determining the type of arithmetic expressions involving mixed ordinary and
specialized and quasi-dimensions. The rules defining the specialized and quasi-dimensions will cover

95

some of the cases, but they can’t cover them all. [I think we decided the following:] In the remaining
cases, the type of the expression is the same as would be formed if each specialized dimension or quasi-
dimension were replaced by the root of its dimension tree. E.g., (Concentration in moles/liter) × (feet of
Width) has type Molarity×Length, and not Concentration×Width.

29.4 Performance Issues

Compile-time checking vs. run-time checking. Unit conversion topologies.

Systems dealing with measurement data are likely to be handling very large volumes of data. There-
fore, search speed over measured data must be very fast. This holds for not only the numeric and units
parts of measured data, but it must also be possible to quickly search over associated context informa-
tion.

30 Conclusion

>>ToDo 78: To be completed.

31 Acknowledgments
We would like to thank Rafiul Ahad, Jim Davis and Evan Kirshenbaum (of Hewlett-Packard) and
Frank Olken (of Lawrence Berkeley Laboratory) for their suggestions and insights.

32 References
1. American Society for Testing and Materials (ASTM), “Standard Practice for Use of the Interna-

tional System of Units,” E380-92, PCN 03-543-092-34, 1992.

2. American Society for Testing and Materials (ASTM), “Standard Practice for Using Significant
Digits in Test Data to Determine Conformance with Specifications,” E29-89, 1989.

3. ANSI/IEEE Std. 280-1985, “IEEE Standard Letter Symbols for Quantities Used in Electrical
Science and Electrical Engineering.

4. ANSI/IEEE Std. 945-1984, “IEEE Recommended Practice for Preferred Metric Units for Use in
Electrical and Electronics Science and Technology”.

5. ANSI/IEEE Std. 260-1978, “IEEE Standard Letter Symbols for Units of Measurement”.

6. Baldwin, Geoff, “Implementation of Physical Units”, SIGPLAN Notices Vol. 22, No. 8, August
1987, pp.45-50.

7. Biedl, Albrecht, “An Extension of Programming Languages for Clerical Computation in Science
and Engineering with Special Reference to Pascal”, SIGPLAN Notices, April 1977.

8. Boring, Edwin G., “The Beginning and Growth of Measurement in Psychology,” in Quantifica-
tion, A History of the Meaning of Measurement in the Natural and Social Sciences, Harry Wolf,
Ed., Bobbs-Merrill, 1961.

9. Bridgman, P.W. “Dimensional Analysis,” Yale University Press, 1922.

10. Buckingham, E. “Phys. Rev. 4,” 1914.

11. Cmelik, Robert F. and Narain H. Gehani, “Dimensional Analysis with C++”, IEEE Software, 5/
88, pp. 21-27.

12. Codd. E. F., “A Relational Model of Data for Large Shared Data Banks,” Communications of the
ACM 13, No. 6, June 1970.

96

13. Coombs, Clyde H., “A Theory of Data, “Psychological Review, Vol 67, No. 3, pp. 143-159, May
1960.

14. Date, C. J., “What is a Domain?” in Relational Database Writings 1985-1989, Addison-Wesley
1990.

15. Deaves, J.C. and Pache, J.E., “Chemical and Numerical Indexing for the INSPEC Database”,
The Indexer, Vol. 16, No. 3, 4/89, pp.163-167.

16. Dreiheller, A., Moerschbacher, M. and Mohr, B., “Programming Pascal with Physical Units”,
SIGPLAN Notices, Vol. 21, No. 12, pp.114-123, December 1986.

17. Gehani, Narain H., “Units of Measure as a Data Attribute”, Computer Languages, Vol. 2, pp.93-
111, 1977.

18. Gehani, Narain H., “Databases and Units of Measure”, IEEE Transactions on Software Engi-
neering, Vol. SE-8, No. 6, November 1982.

19. Gehani, Narain H., “Ada’s Derived Types and Units of Measure,” Software—Practice and Expe-
rience, Vol. 15 No. 6 pp. 555-569, June 1985.

20. Hilfinger, Paul N., “An Ada Package for Dimensional Analysis”, ACM Transactions on Program-
ming Languages and Systems, Vol. 10, No.2, 4/88, pp. 198-203.

21. Horvath, Ari L., “Conversion Tables of Units in Science and Engineering”, Elsevier Science
Publishing Co., Inc., The MacMillan Press, Ltd., 1986, ISBN 0-444-01150-1.

22. House, R.T., “A Proposal for an Extended Form of Type Checking of Expressions”, The Computer
Journal, Vol. 26, No. 4, 1983.

23. INSPEC, “Numerical Indexing: Description and Thesaurus”, IEEE, 1989 Edition.

24. ISO, “Guide to the Expression of Uncertainty in Measurement,” International Organization for
Standardization, Geneva, Switzerland, 1993.

25. Isaacson, E. de St Q., and Isaacson, M. de St Q., “Dimensional Methods in Engineering and
Physics“, John Wiley and Sons, New York 1975

26. Kahn, David L., “A Unit-conversion Algorithm”, BYTE 3/85, pp. 151-164.

27. Karr, Michael and Loveman, David B., “Incorporation of Units into Programming Languages”,
Communications of the ACM, Vol. 21, No. 5, pp. 385-391, May 1978.

28. Kent, William, “My Height: A Model for Numeric Information”, working paper.

29. Maenner, R., “Strong Typing and Physical Units”, SIGPLAN Notices, Vol. 21, No. 2, pp.11-20,
March 1986.

30. Taylor, Barry N. and Kuyatt, Chris, “Guidelines for Evaluating and Expressing the Uncertainty
of NIST Measurement Results,” NIST Technical Note 1297, National Institute of Standards and
Technology, Gaithersburg, MD, January 1993.

31. Wand, Mitchell and O’Keefe, Patrick, “Automatic Dimensional Inference”, in Computational
Logic: Essays in Honor of Alan Robinson, Jean-Louis Lassez and Gordon Plotkin, Eds. pp. 479-
483, MIT Press, 1991

myheight.htm

97

VI OTHER POTENTIALLY USEFUL MATERIAL
[Some of this might be usable in the main text.]

33 Peculiar Measurement Domains

[This is a focused collection of observations about certain troublesome measure-
ment domains. It may be partially redundant with scattered stuff in the main docu-
ment (e.g., Section 2), but I think it could make interesting reading in its own right. I
would try to find a place for this in the main document.]

33.1 Angles

[Maybe just a reference to Section 7.1, if it all stays there in one chunk.]

33.2 Temperature

[Collect (repeat?) a lot of the stuff scattered in the document. Maybe also refer to
interesting discussions in other documents.]

33.3 Weight and Mass

>>ToDo 79: Describe their relationship.

A plausible specialization graph (= means alias):

|
Length/Time--|--Speed

|

| | |

Length/Time 2--|--Speed/Time--|--Accel--|--Gravity
| | |

| |

Mass*Length/Time 2--|--Mass*Accel--|--Mass*Gravity
| =Force | =Weight

>>ToDo 80: A specialization graph question...

That graph also raises this question: if X is a specialization of Y, is X*Z automatically
a specialization of Y*Z (and ditto for X/Z)? Is the question significant?

Rotational Circular Interior Heading

360°>180°>0° 180°>0°=360° 360°=180°=0° 360°=0°≠ 180°
x>y: error

280°+280°=560° 280°+280°=200° 280°+280°=160° 280°+280°: error

98

33.4 Time and Date

Notes...

Pick up the treatment of dates in spreadsheets in Section 3.5.

Another observation: the internal representations of date in computers use many different origins.
That representation confirms the intuition of a date as being a count of days since some origin point.
“Day” is a well-behaved unit. (Tie in with the discussion of counts [Section 15.1].)

33.4.1 The Essence of Time (June 1993)

33.4.1.1 Introduction

This somewhat academic paper outlines the essential semantics of time, with which any temporal
model should be consistent.

33.4.1.2 The Time Line

The best metaphor for time is a single straight line, analogous to the real number line but with no
assumption as to where zero is.

Let’s assume that we all live in the same “reality space” which has exactly one absolute objective time
line. There may be other time lines in fiction, or in people’s subjective perceptions, but we assume one
time line.

An event is something that occurs at a point on the time line. Relativistic considerations are ignored.
We assume that it makes sense to speak of synchronicity, i.e., two events occurring at the same time.
Determining that to great precision may be quite difficult, but that’s another matter. We also assume
that time passes at the same rate for all observers.

The time line is directed, so there is a sense of before and after for any two distinct time points.

The time line is measurable, so that it is known whether one interval is shorter than another.

The time line is continuous and unquantized; there is no minimum time interval, and there are infin-
itiely many time points between any distinct time points.

Date and day-time are simply measurements of different granularity along the time line, much like
miles and feet.

We take the basic unit of measurement to be the day, defined to be an interval on the time time line
during which the planet Earth makes one complete revolution around its axis. Our model takes this to
be a universal constant.

This interval is subdivided in the familiar ways into hours, minutes, seconds, and fractions of seconds,
identified by numbers.

The boundaries of hours are synchronized on the time line (hence so are the boundaries of minutes and
seconds), but the boundaries of days are not. There are twenty-four different zones in which the day
begins at twenty-four different hour boundaries on the time line. (We ignore time zones which don’t
differ by an hour.) Hours are numbered from 0 to 23 within each day in each time zone. The concept of
what day it is, or what time it is, is not defined on the time line, but only in each time zone. A given
event on the time line might occur on different days and at different times in different time zones.

Time zones have geographic boundaries on Earth. The time zone in which the Greenwhich observatory
is located is, by convention, used as a standard reference, denoted GMT (Greenwhich Mean Time).

Time zones are not fixed with respect to the time line. Twice a year they shift back and forth by one
hour. On these occasions a day can have 23 or 25 hours.

99

Days are arbitrarily partitioned into groups of seven called a week, with each day in a week being given
a different name. That’s analogous to giving the twelve inches in a foot twelve names instead of
numbers.

A “spot” is a fuzzy interval corresponding to the granularity (precision) of a time measurement. (A
small spot might be called a “moment”.) Dates, for example, identify spots whose duration is one day.

One of the main reasons for having a concept of time is to be able refer to specific spots on the time line.
The only natural way is to refer to unique identifiable events, such as a memorable eruption of a
certain volcano, or a memorable earthquake, or the birth or death of a particular person. This is not a
very effective way to identify many time points to many people.

This is the reason for calendar systems, whose main purpose is to measure the distance on the time
line between a given spot and some event chosen to serve as an arbitrary origin (zero) on the time line.
Different calendar systems use different origins and different units of measurement, and they give
different measurements in different time zones.

We customarily give precise measurements of large quantities in some convenient mixture of large and
small units. Instead of expressing a certain distance in millions of inches, we express it in some conve-
nient combination of miles, feet and inches. Would we tolerate a system in which different miles had
different lengths, and so did different feet? Well, that’s the way we measure large intervals.

A date is a measure of the distance between a day-long spot and some fixed origin spot. We measure it
in years, months and days, analogous to miles, feet, and inches. Except that these units are not fixed,
and we give some of them names instead of numbers.

The point in time identified as midnight of December 31, 1999 represents a very precise interval from
the calendar origin, which can be counted as some definite number of days plus no hours, minutes,
seconds, or fractions thereof. Since this point actually corresponds to twenty four different points on
the time line, one for each time zone, it follows that each time zone has its own calendar origin,
although they are all within 24 hours of each other on the time line.

Time of day measures an interval beginning at the start of the current day — within a given time zone.

33.4.1.3 Notes

How do we measure large intervals? If we do it in days or hours or subdivisions of these, the meaning
is well defined. But exactly how long is ten years?

We often think of date and time as being essentially different things, but they are really just different
units for measuring the same thing in large or small granularity, analogous to miles and inches.

(Of course, we’ve been saying “date” in the sense of an absolute date of July 4, 1776, rather than a cyclic
date such as July 4.)

The fact that a date is represented by three data elements, i.e., three fields, has no great significance.
It does not signify a relationship among three distinc entities, any more than a length whose measure-
ment is recorded in miles, feet, and inches. The three data elements are an accidental byproduct of the
choice of representation. It could just as easily be two elements (year and day within year) or one
element (a large number of days).

Much of the difficulty with temporal data has to do with the wildly varying sizes of spots, and trying
to make sense of ovelapping intervals bounded by such diverse spots.

100

33.4.2 About Time (August 1992)

33.4.2.1 Introduction

Time, especially dates, constitutes one of the most complex “attributes” we deal with in recorded data.
Its exploration can shed some light on general problems of measured quantities, attributes, values,
representations, and even entities and relationships.

Dates are sometimes perceived as attributes, having values in various representations. The represen-
tations themselves are complex, requiring elaborate conversion routines, and providing the primary
motivation for such data constructs as compound fields. Dates are also sometimes perceived as ternary
relationships, being a relationship among months, days, and years. This in turn exposes a number of
ambiguities in our use of such terms. What is a month? In the sense of that ternary relationship, there
are exactly twelve things in the domain of months (i.e., twelve things which can occur in the months'
position of a date); thus there are twelve months, and “February” is the name of exactly one thing. On
the other hand, a month is a time span of approximately thirty days (as in “I'll see you in a month”);
and we might say that there exist an indefinite number of such things. Or we might say that a month
is such a time span, but in such a way that they don't overlap; there are exactly twelve of them in any
year. “February” is the name of one-twelfth of those things; in any century, there are 100 things named
February. Or, finally, we might say that a month is exactly one particular such time interval: the
month in which John F. Kennedy was elected is different from the month in which he died.

33.4.2.2 What Time Is

Our sense of “what time it is”, or “what date”, is an illusory absolute. It is in fact just as relativistic as
our sense of place. Both senses give the illusion of absoluteness by virtue of certain arbitrary reference
points. As we all know, there is no absolute coordinate system in the universe by which we can specify
the location of objects. At best we can speak of some distances and other geometric relationships to
other objects. We often forget this, although our sense of place is almost always relative to certain
points on the Earth.

Quite similarly, the location of events in time must necessarily be relative. The date of an event is a
measure of the time interval relative to some arbitrary reference event, that event in many cultures
being the birth of Christ.

Our usual thoughtless notion of time refers to local time, rather than world time. We are likely to
assign different birthdates to people born at the same moment on opposite sides of the international
date line. In any model we have to decide how to deal with local time vs. world time, as with the
assumption that events occurring on different dates necessarily occurred at different times.

The converse situation arises out of a question of resolution, or granularity. We tend to record the times
of different kinds of events with different degrees of precision. Births and hirings are recorded to the
nearest day; entertainment events and trains might be scheduled to the nearest minute; events of
scientific interest might be recorded in millennia, or in nanoseconds. Something has to be worked out
to accommodate these in a model with a single time-stamping mechanism. Shall we record all events
to the maximum precision, or shall we allow the varying uncertainties we always allow in real life?
Shall we continue to say that having the same birthday means being the same age, even though the
births may have occurred almost 24 hours apart?

What should it mean to us to say that two events occurred at the same time? Local time, and variable
granularities, make that question hard enough to deal with in our everyday world. The question
becomes totally unmanageable for the likes of us if we consider relativity: modern physicists seem to
be telling us that simultaneity is impossible to determine. In that context, we may begin to wonder
what it means to record the time at which an event occurred. And if we really do want to account for
relativity theory, then we had better accept that the interval between two events is subjective, being

101

possibly different for different observers. The astronaut who returns to us ten years after launching
may feel he's only been gone for a year.

Of course we all want to dismiss that as being too “far out” (pun?). But is it really going to be so long
before we have to deal with such astronauts, or with on-board computers which return from space with
different elapsed times from the ground-based systems? Will we have union arguments over whether
that astronaut has earned one or ten years of salary and seniority for his one year of work? Will the
astronaut object to being counted as nine years older, for retirement and insurance purposes?

It's not all so esoteric. The relevance keeps sneaking up on us. The relativistic question of synchronicity
emerges in the problem of trying to synchronize events in distributed systems [5].

Time is inherently a difficult thing for us to think of by itself, or to describe directly. It is somehow a
medium in which events occur. We perceive it as something which flows, with a sense of direction. It
seems to fit closely the metaphor of a line (the time line), being an infinite and continuous one-dimen-
sional thing, having a correspondence with the set of real numbers. The metaphor is augmented by a
definite sense of direction: we have an indefinable intuitive sense of before and after, of past and
future, which defines for us the universal convention for the direction in which time is increasing.

This is the best metaphor we can use for time in our work: a single directed infinite straight line. It
may not be the ultimate metaphor. Relativity theory seems to posit multiple time lines. We will tempo-
rarily (note that temporal term!) ignore the difficulty of getting observers to agree as to where an event
occurred on the time line (the synchronization problem of relativity theory, suddenly relevant to
distributed systems). We should perhaps deal in subjective time lines, as perceived by people, hence a
possibly different one for each person. But subjective time lines might not “measure” the same interval
between two events. They might not even progress monotonically “forward”, if we take into account
memories of the past, thoughts of the future, and various dreams and hallucinations [cite Borges].
Also, time travel may some day materialize out of science fiction, confounding our illusion of monotonic
progression. And there are cultures (e.g., Hopi) which don't share our perception of time, differing in a
way that we find virtually indescribable 6..

We must necessarily ignore such speculation, and content ourselves with the metaphor of a single
directed line. The identification of points and the measurement of intervals along that line provide our
best basis for dealing with times and dates.

33.4.2.3 Measurements on a Time Line

We use date and time units to express a variety of phenomena. Sometimes we refer to one particular
point in time, such as the date a certain person was hired, or the time at which someone was born.
Sometimes we refer to one particular time interval, such as the year 1979, or between 7 and 10 PM on
June 1, 1979.

But sometimes it's not clear whether we're thinking of a point or an interval. We can only be sure an
interval is intended when two points are indicated, as in March 15-18, 1979. When only one point is
indicated, as in a date, that could really be intended as a point with coarse granularity, or it could be
a reference to a 24-hour interval.

Sometimes we refer to an interval of a certain length, not fixed in any particular place on the time line
— a year, 3 hours, etc.

And sometimes we refer to recurring points and intervals. January and Monday are such. So are
partial dates, like the dates of holidays (Dec. 25th). So is time of day when no particular date is
expressed or implied, and so are the times in train and plane schedules.

Thus we have points and intervals of time, sometimes fixed, sometimes floating, and sometimes recur-
ring on the time line.

102

The intervals are measured in various granularities, or precisions. Date and time correspond to the
precisions occurring most frequently in recorded data: time to the nearest day, and time to the nearest
minute or second (or fraction thereof). Some other useful precisions include decades, centuries, and
millennia.

Date and time are measurements of linear quantities, intervals on the time line, using irregular mixed
radix systems. The measurements are quite analogous in most respects to the measurement of
distance along a line. Hence, whatever techniques we know for data types, representations, and oper-
ations for distances should help us apply similar concepts to date and time.

33.4.2.3.1 Date

A date such as March 15, 1980 designates a point on the time line — a rather broad point, having a
width of one day. The date identifies the point by giving its distance from an arbitrary origin, which is
normally considered to be Dec. 31 of the year 1 BC. (There are a number of calendar systems in use in
the world today. Unless otherwise indicated, dates will be described relative to the Gregorian calendar
[3].)

A date expresses a “distance” along the time line in months, days, and years, just as an ordinary length
might be expressed in yards, feet, and inches. That is, dates are simply linear measurements in a
mixed radix (multiple units) system. March 15, 1980 could be re-phrased as a “distance” of 1980 years,
3 months, and 15 days from the origin. The months of the year are sub-units of a length, like the inches
of a foot. The months happen to have names, while the inches do not.

There are some anomalies which render the analogy less than perfect. A coefficient in an ordinary
linear measurement counts the number of whole units between the origin and the measured point,
while for a date the coefficient also counts the unit which contains the point. A point occurring within
the first foot of a line segment is counted as a distance of 0 feet, x inches, but a day occurring within
the first month of a year is counted as month 1 (January), x days. Thus, to be more precise, the date
March 15, 1980 actually represents a distance of 1979 years, 2 months, and 14 (and a fraction) days
from the origin. There is no year 0; January 1 of the year 1 marks a point 0 years, 0 months, and 0 (and
a fraction) days from the origin.

Another anomaly is the irregularity of the units. While the inches in a foot are all alike, the months of
a year are not. There is not a constant multiplier for converting between months and days. So, the
conversion between months and days is not a simple multiplication or division, but something like a
table lookup or similarly complex algorithm. The analogy between inches in a foot and months in a year
is more apparent if we use addition instead of multiplication: to convert x feet to inches, we sum the
first x elements in the list:

12, 12, 12, 12, 12, 12, 12, 12,

while to convert x months (of a year) into days we sum the first x elements in the list:

31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31.

For leap years, 29 replaces 28 in the sequence. For arbitrary years, the conversion is ambiguous,
although the sequence with 28 is conventionally the default.

Another anomaly has to do with negative values. With distances, all units of a measurement are
counted in the same direction. For a point to the left of an origin, the yards, feet, and inches are all
counted from right to left. Not so with dates. For negative, i.e. BC, dates, only the years are actually
counted backwards. The months and days are counted forward in the same direction as AD dates. The
date March 15, 10 BC corresponds to -10 years +3 months +15 days from the origin (or maybe that
should be -9 years +2 months +14 days).

In spite of such anomalies, one basic concept should stand out: a date is simply a way of expressing a
linear measurement in mixed units. It is not anything more mysterious or exotic. It is not, for example,

103

a relationship among three entities (years, months and days), any more so than a length is a relation-
ship among the “entities” yards, feet, and inches. Nor is it a distinct data type, unless we are also moti-
vated to make distance measurement into another distinct data type.

33.4.2.3.2 Time of Day

Time of day is substantially the same phenomenon as date, being an interval along the time line, rela-
tive to some origin. The granularity is finer, and the origin concept is a bit different. In fact, there are
two starting-point conventions: for a 24-hour clock, we measure time of day from the preceding
midnight; for a 12-hour clock, we measure time of day from the preceding midnight or noon.

But, fortuitously, the anomalies associated with date are gone. Time of day is measured in a nice
regular mixed radix number system, with no more or less anomalies than the measurements of
distance. (Except that for the 12-hour clock we tend to use 12:xx instead of 0:xx in the first hour.)

In some ways, it is strange to think of date and time of day as being different phenomena. The specifi-
cation of a fixed moment in time is often done in a series of six units: year, month, day, hour, minute,
second (and fractions). The first three and the last three simply provide the high order and low order
portions of the same measurement. Date in this sense is no more different from time of day than miles
are different from feet and inches. It just happens that different conventions have arisen for their
representation.

33.4.2.4 Computation Problems

It is most helpful to separate the concept of what a date means from the problems of its representa-
tions. The semantics of a date are simply an integer number of days from the origin day. Meaningful
operations on dates are the same as the meaningful operations on distances from a fixed point on a
line. A date can be increased or decreased by an integral number of days, and the difference between
two dates is an integral number of days.

Similar operations can be defined for time of day and time intervals.

33.4.2.4.1 Time Zones and Daylight Saving Time

It is not the same time all over the world. An event on the time line maps into different date-time
measurements in different places. In effect, each time zone measures time relative to a different origin
point on the time line.

The measurement of time is therefore dependent on the place where it is measured. This becomes
increasingly significant, of course, in the context of distributed systems and data bases.

Furthermore, clocks are set back or forward by one hour twice a year in some parts of the world, in
observance of Daylight Saving Time (DST) (sometimes also called Summer Time). This also has the
effect of shifting the origin point on the time line forward and backward by one hour, at various times
of the year.

In a strange way, the measurement of time depends on the time at which it is measured. Some
segments of the time line are measured relative to one origin, and some to another. To map an event
into a date-time measurement, you not only have to know where on earth you are, but where you are
on the time line. Time is a function of place and time:

 T=f(P,T).

 This dependence of time measurement on time and place affects the determination of:

• the time of an event,

• the date of an event,

• the interval between two events,

104

and causes a number of anomalies.

The date of an event can be affected by time zone and DST. For one party in a phone call it could be
Monday while for the other party it is Tuesday. That could occur even within the same time zone
around midnight, between regions which do and don't observe DST. In these cases, if both parties are
maintaining a log of phone calls, they will be recorded as occurring on different dates.

Date and time are ambiguous references to the time line, unless supplemented with some knowledge
of place. This knowledge of place determines both the time zone and whether or not DST might be in
effect. Quite often we assume the “local place” as an implicit qualifier.

Given the date and time of two events, the computation of the interval between them can get compli-
cated. Without taking time zones and DST into account, we might have a message arriving before it is
sent. We might have events which actually occurred up to 25 hours apart being recorded with the same
date. The elapsed time from midnight to midnight at a given location might be 23, 24, or 25 hours.
(Does that constitute one day?) The interval between 2 and 3 AM on certain Sunday mornings might
be zero hours, or two. (Are there two occurrences of 3 AM on some of those mornings? Can events occur-
ring an hour apart occur at 3 AM?)

Birthdays and hire dates are slightly imprecise measures of relative age or seniority. People born at
the same moment might have different birthdays, and people born up to 24 hours apart might have the
same birthday. (That could even be 25 hours, with DST considered.) In fact, a person born at a later
time could have an earlier birthdate. Such concerns might become non-trivial when inheritances, or
layoffs, are at stake.

33.4.2.4.2 GMT

A common solution to such problems is to adopt a single global time reference for the time line, inde-
pendent of time and place. That's precisely what Greenwich Mean Time (GMT) is. One difficulty with
the solution is that it is not universally used, nor universally usable. We have a strong urge to keep
our local senses of the appropriate times for sunrise and sunset and meals, and local time will continue
to be used. Thus one needs to know whether an expressed time is local or GMT; and the algorithm for
converting between local time and GMT still suffers from the anomalous time and place dependencies.
Furthermore, conversion to GMT distorts dates. Recording birthdays in GMT would change the birth-
days of possibly half the people in the world.

33.4.2.4.3 Irregular Units

Other minor computational problems have already been mentioned. Dates are not quite as well
behaved as other mixed radix measurements because the sizes of the units are irregular. Months have
different numbers of days, years have different numbers of days, and one notorious month has different
numbers of days in different years.

Even the correct leap year computation is not widely known. Not every fourth year is a leap year;
centuries are only leap years modulo 400 (three centuries out of four are not leap years).

33.4.2.5 Representation Problems

We have problems with the representation of date and time, though many of the problems are common
to the representations of any measured quantities.

The basic phenomenon involved is the mapping of a measurable item to a character string. The
mappings are complex, and many mappings are possible, yielding many possible character strings for
the same item.

33.4.2.5.1 Mappings

The mapping of a measurable item to a character string involves choices in the following variables:

105

• Accuracy and precision

• Origin

• Units

• Coefficients

• Representation of units

• Representation of coefficients

• Sequence and punctuation

Accuracy and precision of measurement is something we will largely ignore here. We have enough diffi-
culty with the representation of a single ideal measurement.

Choice of origin doesn't present a problem, when the boundaries of a measured item are defined. But
occasionally they are not. In order to identify the location of some physical point, a reference point or
coordinate system must be established. The measurement of distance to a city depends on the reference
point chosen in the city. For date and time, the origin point is affected by the calendar system, the time
zone, daylight saving time, and the choice between 12- and 24-hour clocks. Different calendar systems,
such as the Jewish or Chinese, are based on origin points different from the Gregorian calendar in
common use. Sometimes the origin is arbitrarily shifted: we lost ten days in the reform from the Julian
to the Gregorian calendars, when Oct. 5, 1582 became Oct. 15, 1582.

For most measurements there are alternative sets of units available, such as metric and non-metric.
For time (in the narrow sense), there seems to be only one set of units in general use: hours, minutes,
and seconds. For dates (time in the broad sense), one set of units dominates: years, months, and days
of the Gregorian calendar. But again, there are alternative calendars, with different lengths of months
and years, sometimes based on lunar instead of solar cycles [3]. And we also have Julian notation, often
used in data processing and quite unrelated to the Julian calendar, where the set of units is just years
and days (analogous to measuring distances in just yards and inches).

Even for a given set of units and an idealized measurement, various sets of coefficients can be applied
to the units. There is a “canonical form”

k1U1, k2U2, ..., knUn

in which:

• for all terms except the first, kiUi is less than the next higher unit (i.e., don't write 13 inches),

• for all terms except the last, the coefficient is an integer,

• the coefficients ki all have the same sign,

• the coefficient ki corresponds to the number of whole units Ui between the measured point and
the origin (possibly modulo some divisor).

Such canonical conventions are frequently violated. We often do write 15 inches instead of 1 foot, 3
inches; and 1.5 feet instead of 1 foot, 6 inches (or 4.5 feet instead of 1 yard, 1 foot, 6 inches).

As mentioned earlier, for dates BC, the years' coefficient has the opposite sign from the months' and
days' coefficients. And for dates in general, the coefficients are all too large by 1.

For time of day on a 12-hour clock, the coefficient k1 is always wrong: within the first hour after the
origin, we write 12 instead of 0. And for dates we sometimes truncate the two or three high order digits
of the years coefficient, writing 79 or 9 for 1979.

Representation of units is not usually of concern for stored data, since the units themselves are not
stored but factored into the description: distance in miles, weight in tons, age in years. For time of day

106

and date, even input and output forms don't seem to involve representation of units. But for time inter-
vals, and other measured quantities, units can be represented in a variety of abbreviated or capitalized
forms, and sometimes alternative symbols are used (such as ' for feet, or “ for minutes).

For the representation of coefficients, we have all the usual options concerning the representation of
numeric quantities, such as number base, data type, precision, implied decimal points, leading zeroes,
etc. For dates, the month coefficient might be an integer, or any assorted spellings, abbreviations, and
capitalizations of the names of the months. A year might be given in Roman numerals, and clock faces
sometimes have Roman numerals.

The problems of variability of sequence and punctuation seem to be peculiar to date and time of day.
For dates, the year, month, and date coefficients can occur in just about any permutation. Occasionally
a sign indication is included (AD or BC), sometimes at the beginning and sometimes at the end. Time
of day always seems to be given in standard sequence, although it could have an origin indication (AM
or PM) added. Time intervals, like most measurements, suffer the standard problem of omission of 0
coefficients: 2 hours and 10 seconds.

Punctuation conventions for time of day include various combinations of colons and periods (12:23:10,
12.23.10, 12:23.10 — the last having an ambiguous reference to either seconds or hundredths of a
minute). For dates, punctuation conventions include various combinations of slashes, commas, periods,
and blanks.

The net result of all these alternatives is an enormous variety of character strings corresponding to a
single measured item.

33.4.2.5.2 Recognition Problems

The mapping of measured item to character string is not uniquely invertible. 3:10 might be hours and
minutes or minutes and seconds. 3/10 might be March tenth or October third (or even 0.3). Some time
and date conventions use periods, allowing 3.10 to have all four of those interpretations, in addition to
being an ordinary decimal number.

Such problems are not unique to time and date. They are no different in principle from the problem of
determining whether a sequence of digits is decimal or integer, and whether it might be in octal or hex.
Similar solutions apply in all cases: impose arbitrary conventions to make them decidable.

Without such conventions, it is not possible to determine whether certain character strings are valid,
nor how they compare, nor how to perform other computations on them.

33.4.2.6 Modelling Time

33.4.2.6.1 Ambiguities

The question of how time ought to be treated in information models must first deal with a sea of ambi-
guities. The terms involved have an unusually large variety of meanings and usages. A single term
may correspond to a half dozen distinct concepts.

In this section we merely illustrate some of the ambiguities. We have made no attempt to disambiguate
the terminology in the present paper; to do so would require the introduction of too many artificial
terms and definitions to be intelligible. We hope that the context has made the meanings sufficiently
clear.

Time:

1. A broad inclusive term, in the sense that date is a particular form of representing time. “A given
date represents the time elapsed since the birth of Christ.”

2. Time of day, an aspect of time which is different from date, and is measured in a granularity of
minutes, seconds, or fractions of seconds. “Date and time of birth.”

107

3. A time interval. “The flight time is 3 hours.”

Day:

1. One of: Sunday, Monday, ..., or Saturday. “On what day were you born?”

2. Relative day within a month. “Month, day, and year.”

3. Relative day within a year. “YYDDD is year and day in Julian notation.”

4. A single specific day. “On the day I was born, it rained.”

5. Any 24-hour period. “72 hours equals three days.”

6. A period from midnight to midnight. “Tom and Dick were born on the same day.” (Such a day
could occasionally be 23 or 25 hours, due to DST.)

7. An interval between sunrise and sunset. “Night and day.”

Sunday:

1. One specific day.

2. The first day of any week. (Were two people born on Sunday born on the same day?)

Similar ambiguities apply to other intervals, e.g., week, month, year, January.

33.4.2.6.2 What “Is” a Date?

The question of how to model a date is really the same as the broader question of how to model any
measured quantity. In terms of some common modelling constructs, we have a full range of choices:
dates can be modelled as attributes, as entities, and even as relationships.

Dates as Attributes

For our purposes, we define an attribute as the name of some fact (such as “height” or “birthday”), and
a value as a character string which can be associated with an attribute for some individual.

Values can be treated in two ways regarding equality. As pure character strings, unequal strings
constitute unequal values. Thus “6 feet”, “6 ft.”, and “72 inches” are three unequal values of the height
attribute; and “Jan. 1, 1979", “1 Jan 79", and “1/1/79” are three unequal values of the birthday
attribute.

Alternatively, conversion algorithms can be introduced, allowing the inequalities of the previous exam-
ples to become equalities. Such conversion algorithms are not explicitly reflected as a formal part of
currently known information models.

Dates as Entities

Whenever we allow for conversion among values of attributes, we implicitly acknowledge something
invariant behind the different character strings so equated. There is something else there besides the
characters in “6 feet”. There is a certain space, to which various representations of measurement can
be associated. We can, if we wish, think of the thing being measured as an entity in itself. Thus a
certain height, or a certain day, can be viewed as an entity.

The correspondence between such an entity and its various representations can be modelled in several
ways. The simplest is to consider it an arbitrary mapping between entities and symbols, just like the
mapping of people to their names or social security numbers, or the mapping of a certain color to the
arbitrary synonyms “red” and “crimson”.

Alternatively, one could model the whole measurement phenomenon [4]. Various sets of units of
measurement are introduced into the model, and the combination of a measured entity and a set of
units is mapped into a set of numbers (the abstractions of the coefficients mentioned earlier). These

108

numbers and the set of units are then further mapped into character strings taking into account the
desired representations of the coefficients and units.

This last approach is generally too complex to be useful, although it is probably the most precise model
of the phenomenon.

Treating measured quantities as entities is not a generally familiar concept — except, perhaps, in the
domain of time. Certain cycles and patterns in our lives have become so culturally ingrained that they
seem almost palpably to be entities. Days, weeks, months, and years seem to have that character. It
does not seem so unnatural to think of a certain day as an entity, having various attributes and being
related to various other entities. It had various rainfalls and temperatures in various places. There are
people who were born, hired, fired, married, and divorced on that day. Wars were declared, battles
fought, and treaties signed on that day. And so on.

Of course, there is a curious lack of objectivity about such entities. Different calendar systems carve
out different entities (years, months) from the time line. A day is nothing more than the period of one
revolution of a certain spinning object; the individual revolutions of other objects do not seem particu-
larly to be entities. It doesn't matter. Entities are where we perceive them. They exist wherever we
agree to think so [4].

We can contemplate the “naming” of intervals.

A year is an interval subdivided into 12 shorter intervals, the months. A week is an interval subdivided
into 7 shorter intervals, the days. Why have we given distinct names to those shorter intervals?

A foot is an interval subdivided into 12 shorter intervals, the inches. Why haven't we given distinct
names to those shorter intervals? Why don't we have a distinct name and concept of the 5th inch of
every foot, just as we name the 5th day of the week or the 5th month of the year? Anybody who thinks
Thursday is a distinct entity should also agree that the 5th inch of all feet constitutes one distinct
entity.

Dates as Relationships

Because a date like March 15, 1979 is often recorded in three columns of data, it is sometimes held to
be a relationship among three entities. It can be awkward to define what those entities are.

“March” here names an abstraction of the third month of all years, which is or isn't an entity just as
much as the third inch of all feet is an entity. “15” names the 15th day of all months; it is the only
“entity” which is common to the two “relationships” March 15, 1979 and April 15, 1799.

33.4.2.6.3 Time in Data Bases

 Dealing with time in a data base involves all the concerns about representation and modelling already
discussed. In addition, we must consider how time-related information about the real world is captured
in data bases. (Other references addressing this point are included at the end of this paper.)

Real World States and Data Base States

Though often claimed, it is rarely true that a database is a snapshot of a state of the real world. Many
databases include a great deal of historical information.

There are two sequences of states: the real world and the database. A single state of the database
describes many states of the real world. That's precisely the significance of memory: information about
many past states of the real world can be retrieved from a single present state of the data base. A data-
base update creates a new database state, which may not correspond simply with a new (later) real
world state. The new database state might reflect

• A deletion of an old real world state (purge expired information).

• An extension to include a new real world state (report of change occurring in the real world).

109

• A modification to some prior state of the real world (either an error correction, or a late report of
an old change).

Earlier states of a data base are never altered. Earlier states of the recorded real world are often
altered, in later data base states.

“As of” data retrievals are ambiguous: “as of” in the real world, or “as of” in the data base? Do you want
your bank balance as of March 15, 1979, or as it appeared in our records on that date? While the former
may be the more sensible interpretation, it could give different answers when asked at different times.

A data base state can not usually be described as a simple union of real world states. That would imply
that the histories of different attributes and relationships were all maintained with the same granu-
larity, reporting cycle, and persistence.

Sequentiality

 There are at least two sets of time values: when things occur, and when they are recorded. Things are
usually recorded later than their occurrence. And they are not always recorded in the same sequence
as they occurred.

One of the open questions in information modelling is whether time should be introduced as a special
construct, or whether it can be handled simply as another attribute defined and managed by users as
needed. Because of the computational complexities mentioned earlier, it is a convenience to provide
special facilities for time and date. On the other hand, there is little the system can do to automatically
maintain time related information, unless users are willing to equate time of occurrence with time of
recording. If time of occurrence has to be provided explicitly as part of the input information, then it
seems to have the same character as other attributes included in the information.

Note that if dependences are automatically maintained in the data base (especially implications), then
we must be concerned about recording events in the chronological order of occurrence. Otherwise there
could be an enormous maintenance problem. If an event is recorded as having occurred earlier than
some other events already recorded, then it may be necessary to “roll back” time, and recompute
history. In the worst cases, previously generated information (or other output actions) may become
invalidated, and perhaps previously accepted inputs may be rendered unacceptable (inconsistent with
the newly perceived state of affairs at that time).

The problem goes even beyond a need to enter changes into the system in correct order. In a distributed
system, if the changes are entered at different nodes of the network, they might arrive at the node
holding the data in a different order than they entered the network.

33.4.2.7 Idiosyncrasies

Time also seems to be rich in phenomena illustrating how illusory and artificial are some of our percep-
tions of reality. There are so many things we perceive as “natural” and “existing” which, if examined
very objectively, turn out to be surprisingly elaborate artificial conventions of our making.

The concept of time collects around it an amazing variety of mental exercises illustrating all sorts of
perversities of which the human mind is capable. It is the vehicle by which many subtle mental abili-
ties are learnt, and for which we invent many kinds of abstractions.

Time provides a general lesson in irregularities. Learning about time does wonderful things to the
naive mind. They suddenly come into focus when you try to teach these things to a child. It seems to
be a basic mechanism for bringing the mind in touch with many peculiar devices we unthinkingly use
in dealing with the real world.

Reinterpretation of signs: “9” signifies 45, or 15, or a quarter.

The third hand is the second hand.

110

Abstraction of concepts: an angle between radial pointers is “the same as” a digital display.

Further abstraction: some clocks don't have numbers on them.

Metaphor: hands pointing.

First lesson in unnatural arithmetic: 10 + 4 = 2.

Ten can be before (earlier than) two.

International date line: is it the same day everywhere? The same time?

If you and I were born on Monday, were we born on the same day?

If you and I were born at the same instant on opposite sides of the international date line, were we born
on the same day?

33.4.2.8 Conclusions

Date and time are complex and esoteric topics to contemplate, but their modelling is less tortuous.
They can be treated largely as special cases of measured quantities, with some computational aberra-
tions to be taken into account. Representation problems require arbitrary solutions, such as limiting
the variety of forms allowed and introducing appropriate syntax to remove ambiguities. While argu-
ments may arise over various such solutions, they are not conceptually difficult.

33.4.2.9 References

1. B. Breutmann, E. Falkenberg, and R. Mauer, “CSL: A Language for Defining Conceptual Schemas”,
in G. Bracchi and G.M. Nijssen, Data Base Architecture, North Holland, 1979.

2. J.A. Bubenko, “The Temporal Dimension in Information Modelling”, in G.M. Nijssen, Architecture
and Models in Data Base Management Systems, North Holland, 1977.

3. “Calendars”, Encyclopedia Brittanica.

4. W. Kent, Data and Reality, North Holland, 1978.

5. L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System”, Comm. ACM 7
(21), July 1978.

6. Benjamin Lee Whorf, Language, Thought, and Reality, MIT, 1956.

34 Miscellany

34.1 Types of Physical Quantities

It is necessary to be able to identify, refer to, and differentiate various types of physical quantities
(domains) such as weight, mass, length, area, volume, time points and intervals, speed, velocity, accel-
eration, temperature, frequency, etc.

Identifying and differentiating types of physical quantities is a non-trivial task. Some, like length and
weight, are reasonably simple concepts to identify and differentiate. Even these, though, can be
troublesome if we want to be very careful, such as the distinction between weight and mass, or the
distinction between weight in vacuum and weight in air.

Others, like locations in space or points in time, might raise a question as to whether they should even
be considered physical quantities, since they don’t seem to have a sense of magnitude inherently asso-
ciated with them. A place is just a place, not anything which has a bigness to be measured.

The well-behaved ones are relatively precise concepts, often expressible in algebraic relationships such
as area being the square of length, or speed being the ratio of distance to time. Others, like amount,
while being a reasonably clear concept, are more like a family of closely related physical concepts. An

111

amount of stuff might be expressed in terms of weight (iron), volume (water), area (carpet), length
(rope), or even a simple numeric count (people, atoms). The amount of a given chunk of stuff is often
expressible in several such terms. Is “amount” a single domain or several?

Other such problematic domains also involve the notion of amount. Concentration, for example, is
essentially the ratio of two amounts, each expressible in any of the forms that amounts can take.
Productivity is a ratio of amount to time, fuel consumption might be a ratio of amount to distance or
time, and so on.

We need to be clear as to whether we consider amount to be a single type of physical quantity or a
family of such types. If it’s a family, does the single family behave in some ways like a single type? E.g.,
units which measure the same type of physical quantity can be converted to one another. Can the same
be said of units which measure the same family of physical quantities? Can a weight be compared with
a volume?

Amounts illustrate concepts which are not algebraically equivalent (e.g., weight and volume) yet seem
to be the same in some sense. Conversely, some things which are algebraically equivalent don’t seem
to be the same. Are length and width the same type of physical quantity? What about the length of an
object vs. the distance something travels? Is the production rate of rope or licorice in feet per hour the
same concept as speed? Dimensional analysis treats angles as being algebraically equivalent to a ratio
of two lengths, yielding a dimensionless quantity if we do cancellation. Does that make angle the same
as a pure number? Then what do degrees and radians measure? Torque and work are both algebra-
ically equivalent to Force times distance, but these are clearly not the same physical quantity.

Populations which do or don’t include negative quantities constitute different types. Weight in a
vacuum has no negative quantities, while weight in air does. Weight in air is really a measure of buoy-
ancy. A helium balloon would pull upward on a scale, and lighten the weight of a person holding one.

It may also be useful to clarify whether a domain need be limited to quantities which can exist in
reality. Dimensional systems are used not only for measuring real phenomena, but also for describing
hypothetical or fantastic situations. Does the speed domain include speeds greater than the speed of
light? Should 2c be an invalid speed expression? Does the energy domain include half a quantum? Then
perhaps it might also be meaningful in some contexts to contemplate negative masses, and negative
temperatures. [Illustrates the point that users of a measurement system need to establish consensus on the
nature of the domains involved.]

Language doesn’t always help. Sometimes natural language fuses different concepts into a single term
(as with the several domains called “angle”), and sometimes makes artificial distinctions within the
same concept. Compare the notions of time and distance. They are quite similar, both being isomorphic
to the one-dimensional real-number line. They become even more nearly identical if we imagine
ourselves to be moving at constant speed in a straight line. There is a sense of place in both domains;
“here” and “now” are isomorphic concepts. Both domains also have a notion of interval.

Yet there are strange asymmetries in the language we use in the two areas. With distance, we use
distinct terms for the notions of point and interval, one being “location” and the other being “distance”.
Where I am is a location; how far I am from you is a distance. However, we use the term “time” for both
point and interval: when I was born, and how long I’ve lived, are both considered to be notions of time.
If we go by linguistic conventions, then point and interval seem to be different physical quantities in
relation to distance but the same physical quantity in relation to time. (We do have the word “duration”
for a time interval, but we don’t have a corresponding word that makes a single concept of the phrase
“point in time”. [Jim suggested “instant”, but it doesn’t have exactly the right connotation. It may have
something to do with an implied granularity. “In my chair” and “in California” are both location concepts,
despite the disparity in granularity. In contrast, it seems comfortable to call “3 PM today” an instant, but not
“today”, even though both may be a description of when something occurs. To be resolved.])

112

On the other hand, Distance has one set of terminology for all granularities, while Time uses two.
Whether we say that I’m in my chair or in California, both are considered to be “location”. However, if
we say that I was born at 3 PM or on February 19, one is considered to be “Time” while the other is
“date”.

There is another difference. For times we have distinct names for periodically repeating points and
intervals, such as Tuesday, 3 PM, January, and January 15. We don’t seem to have a natural counter-
part for distance. It may just be an accident of astrophysics, in that our notions of time derive from the
behavior of the spinning and rotating body we live on. If planet Earth moved in a straight line through
space, without rotating around the sun or spinning on its axis, our notions of time and distance might
be more isomorphic, with no natural notion of cycles in either.

The bottom line is that we can’t always rely in our intuitions, common sense, or linguistics to guide an
objective identification and differentiation of the types of physical quantities. We need some other basis
for a systematic formal model of physical quantities and measurement.

34.2 The Reference Rocks

Symbolic representations of phenomena in a scalar measurement domain D are expressed in terms of
units. A unit is defined as some instance u of D such that any instance of D is equal to a combination
of some number of occurrences of u.

For example, we can pick a certain rock as the Reference Rock. We can find a lot of rocks each of whose
weight is equal to the weight of the Reference Rock. For an arbitrary rock, we might find that its weight
is equal to the weight of k rocks, each of whose weights is equal to the weight of the Reference Rock.
We then say that this rock weighs the same as k Reference Rocks, or that its weight is k Reference
Rocks.

If the weight of a rock isn’t an integral multiple of the weight of the Reference Rock, we can generalize
to rational numbers by saying that the weight of a rock equals the weight of n/m Reference Rocks if the
weight of m of the rocks equals the weight of n Reference Rocks. If the weight of a rock isn’t a rational
multiple of the weight of the Reference Rock, it can be approximated by the weight of another rock that
weighs nearly the same as the rock we want to weigh.

Thus the weight of any rock is equal to or approximated by the weight of k Reference Rocks, where k
is some rational number.

That’s what measurement is. It is rooted in counting: how many reference units are equal to the phys-
ical quantity being measured? Notice the close association between two meanings of the word “unit”.
The unit of measure is the size of the things we are counting; it corresponds to a count of one, i.e., a
unit.

Different units are trivially illustrated by introducing reference rocks whose weights are not equal to
each other. Let’s say, though, that all Blue Reference Rocks weigh the same, and that all Green Refer-
ence Rocks weigh the same. Then a given rock might weigh the same as x BRR’s or y GRR’s. If we know
how many Blue Reference Rocks weigh the same as one Green Reference Rock (or vice versa), then we
know how to convert between x and y. Given either, we can compute the other.

34.3 Combinational Closure

This breaks down for temperature and location. I don’t get any good intuition as to what it means to
combine the temperatures of two kettles of water and judging that to be equal to the temperature of a
third kettle. Nor do I get a good intuition of what it means to combine the locations of two points in
space and judging that to be equal to the location of some other point, in the absence of a superimposed
coordinate system.

113

Formal description of the combinational operator for a measurable quantity can be complex.
Combining lengths, for example, involves a notion of laying end to end. Things which are not straight
(perimeters of circles, coastlines of countries) must first be mapped into something straight before
being combined.

Colors have such a combinational operator, but spatial locations don’t.

Weights (masses) combine by inert juxtaposition. Just because anti-matter might annihilate matter
when they come in physical contact doesn’t necessarily mean that anti-matter has negative weight (or
mass). This is analogous to saying that the sum of masses of some atomic particles is not given by the
mass of the results of their fusion, since some mass might vanish into energy.

(However, we do use the opposite reasoning for particle charges, where we do think of them as being
positive and negative because they cancel each other out. The real message is that this is at least a
point of potential ambiguity which needs clarification in any particular measurement system before
we can agree on what sorts of operations are valid, and what their results are.)

34.4 Division and Rational Closure

The preceding axioms don’t guarantee closure under division. What we have established is that, given
a reference weight x0, if there is a certain weight x1, then it can be expressed as (or approximated by,
if continuity holds) kx0 for some k. However, nothing in the axioms seems to imply that there must
exist a weight equal to kx0 for arbitrary x0 and k. Closure is guaranteed for an existing x0 and an arbi-
trary integer k, due to the closure property of # [Section 11.1.4], but not for arbitrary rational k.

Thus closure under division seems to be an independent axiom. This also doesn’t seem especially
important, until we find some domain where such closure doesn’t hold. We simply make the observa-
tion in passing; in most cases it will simply be postulated that this axiom holds.

34.5 Information About Physical Quantities: Measurements

In the previous section we talked only about physical quantities, and not about how to describe them
to computing systems (nor how computing systems might describe them to their clients). In this section
we discuss a realm slightly different from the realm of physical quantities: the results of mapping a
physical quantity into information about the quantity. Such results are found in the output of
measuring instruments, in repositories of measurement data, and in the output of computations on
such data. Most computing systems operate in this realm, although they largely ignore it.

The word “measurement” is commonly used to mean both the process of measuring something and the
results of measuring something. Since we are largely uninterested in the process, in this paper we will
use the word “measurement” to mean the results of measuring something. We also use it, more loosely,
to mean the description of physical quantities, whether or not they have actually been measured. Thus
the thickness of a wall to be built, the average of several temperature readings, and the result we
expect when we measure the mass of a truck, are all loosely called “measurements.”

34.6 Information About Measurements: Measurement Data

In Section 34.5, we noted that observations of the physical world usually have context, and finite accu-
racy and precision. In general, when those measurements are communicated or stored, further context
is added and further precision and accuracy are lost.

These changes propagate into the effects which precision, accuracy and context have on arithmetic,
assignment and equality. The effects are the same as described in Sections 3.6 and 3.7, above. Let us
be careful, though, to separate the precision, accuracy and context of an observation’s representation
from those of the observation itself.

• An observation made with high precision may be stored with low precision.

114

• Bias can be introduced (by a rounding algorithm, for example) into an accurate observation.

• The act of presenting an observation to a computing system is an event with its own context
(date, operator, location, etc.), separate from the context surrounding the observation. Two sepa-
rate data, with different precision, accuracy or context, may describe the same observation.

34.7 Measurement Fundamentals

The preceding sections introduced the relationship between dimensions and units. This section gives
a more rigorous basis to both notions, and further characterizes the kinds of quantity that would
benefit from the support we describe in this paper.

Even at a rigorous level, the abstract phenomenon described by a dimension is still a matter of conven-
tion. If two people disagree about what mass is, there is no physical reference to which they can appeal.
Even if they agree that properties such as inertia and gravitational attraction are the defining ones
(and not, say, temperature or size), people may still disagree about whether the mass of a thing
includes oxidation on its surface, etc., and whether physically impossible values (negative, or very
large) are still members of the dimension. In this paper we assume agreement on such matters.

Given such agreement, there are different abstract paradigms for assigning a symbolic representation
to a member of a dimension—by judging, polling, testing, measuring, etc. We will have more to say
about these; for now we assume agreement on a paradigm.

Given an abstract paradigm, there are many possible implementations of it, with associated issues of
isolating variables, repeatability of measurement, averaging of readings, etc. Give better examples of
implementation issues. We do not address these physical properties, but focus on the abstract
meaning of measuring an agreed-upon phenomenon. The subject of this paper—dimensioned data—
are then the results of such measurements.

The sense we mean of “measurement” chooses a particular instance of some dimension as a “unit.”
Everything in the dimension is then expressible as having magnitude equal to k of the unit thing. The
number k will be the symbolic representation for magnitudes in the dimension; obviously, its value
depends on the particular choice of unit.

This sense of measurement and unit requires a notion of equality of magnitudes in the dimension. As
with agreement on the meaning of membership in a dimension, we assume a notion of equality of
magnitudes. Note that this is distinct from the notion of sameness. If Dan and Bruce are equally tall,
it doesn’t matter whether between them they have two heights or one; what matters is whether their
heights have equal magnitude. In the rest of this paper we will use “equality” to mean equality of
magnitudes.

We have two goals for the sorts of measurement we have described:

• Symbolic Notation: a mapping from an abstract phenomenon (such as viscosity or length) to some
symbolic representation. The representation may be numeric, but need not be: school letter
grades and category names such as “low,” “medium” and “high” can be measurements.

• Operations. The reason for all this trouble is that representations are easier to operate on than
the things themselves. Operations (such as addition and test for equality) on the representations
should thus mimic the related operations (such as combination and test for equality) on physical
quantities. It is again subjective which aspects of the behavior are relevant and what level of
mimicry will do. We have more to say about this below.

Provided, then, with subjective notions of dimension, equality and relevant behavior, and focussing on
the meaning and results of measurements rather than the physical process of obtaining them, let us
describe carefully what properties a quantity must have to be measured, and what we can say about
its measurements.

115

34.8 General Functionality

34.8.1 Physical Quantities

34.8.1.1 Count

Count is, in a sense, a degenerate unit, mapping a quantity (a set of things) into a number. To put it
another way, units are a mechanism for converting amorphous things into things which can be
counted, e.g., “how many” inches or pounds. Count can also be regarded as the numerator in some of
the compound units expressed as 1/seconds, e.g., frequency (cycles/second) and radiation (disintegra-
tions/second).

Count raises issues bearing some resemblance to the problems of substance-dependent conversions. It
goes beyond compatible dimensions into concerns about “compatible properties”; we might not just ask
whether two counts can be added, but whether it makes sense to add the numbers of apples to the
number of oranges. But it we stray too far in that direction, we will ask whether it is valid to add the
length of a shoe to the length of a car. In other ways, count is well-behaved: we can measure person-
months of effort, or passenger-miles of travel. Interesting problems remain to be investigated along
these lines.

34.8.1.2 Discontiguous Mappings

In some cases, the physical quantity measured is discontiguous. For example, the time during which a
football game is actually played is discontiguous when compared to chronological time. Nonetheless, a
touchdown will be described as happening “5 minutes into the second quarter” rather than at 3:13 pm.
This corresponds to the following situation:

The reverse situation occurs when unit labels are discontinuous while the physical quantity remains
continuous. For example, when switching from the Julian calendar to the Gregorian calendar in
September, 1752, several days were simply omitted, thus producing a discontinuous labeling of
calendar days:

34.9 Future Work

34.9.1 Semantics

Specialized dimensions, quasi-dimensions, and “dimensionless” quantities need exploring. We need a
clean statement of their behavior and a sound place for them in the type hierarchy. We need to figure

chronological time

game time

chronological time

discontiguous labels

1 2 14 15 16 17 18 19

116

out how to extend the notions of dimensional analysis to specialized and quasi-dimensions. We would
like also to characterize more fully the quantities which need to be represented as point + interval. Can
we decide algorithmically which they are? For each one, is there a coordinate system with a natural
zero?

Once that is in place, we want to look at vector dimensions of all those things, be sure they behave
consistently, and verify our hypothesis that Cartesian coordinates is the proper canonical coordinate
system for them.

It should be possible to sketch a small but nontrivial treatment of precision, accuracy, and context
information. Precision can be integrated with the numeric format of PQEs. It may be possible to unify
context with substance-specific conversions, by treating the type of substance involved and its relevant
properties as “context.”

34.9.2 Machinery

The support needed to add, change and delete dimensions, units, conversions, specialized dimensions,
quasi-dimensions, and vector dimensions should be designed in more detail. Similarly, input and
output of PQEs for non-basic dimensions (including the treatment of default units) needs more work.

We want to work out the compatibility issues for unary and n-ary operations, as we have done for
binary operations, and to see what is required to support static type-checking.

Finally, we want to find a prototyping vehicle that can support the ideas presented here.

34.10 Domains

Some mechanisms currently exist for supporting domains. C++ provides this functionality through the
use of private inheritance. For example, we could define the class Length as follows:

class Length {

private:

// implementation

public:

Length& operator+(Length&);

Length& operator-(Length&);

};

Then we could define the subclass Height as follows:

class Height: private Length {

public:

Height& operator+(Height& h) {

return (Height)this->Length::operator+(h);

}

Height& operator-(Height&) {

return (Height)this->Length::operator-(h);

}

};

117

Private inheritance means that from the user’s perspective, Height is not a subclass of Length. If we
had not explicitly defined the + an d- operators in class Height, adding or subtracting two heights
would not be legal. That is, private inheritance prevents a subclass instance from being treated as a
superclass instance, and thus using methods defined on the superclass. Notice that the implementa-
tion of the class Height can access its superclass Length; however, this is hidden from the user.

In the case that a user really did want to add a Height and a Length (or perhaps a Height and a Width),
it is possible to provide explicit conversion functions that would convert a Height or a Length into a
Width. This would allow statements such as:

main() {

Length l1, l2;Height h1, h2;

Width w1, w2;

w1 = convert(l1) + w2; // invokes Width operator +

w2 = convert(l1) + convert(h1); // invokes Width operator +

h2 = h1 + h1; // invokes Height operator +

w1 = l1 + w2; // illegal

w1 = l1 + h1; // illegal

Include also SQL3 and Ada examples?

34.11 Conversion of Non-Numeric Units

The range of a unit can be any totally-ordered set. Let U and V be such sets. The difficulties in
converting PQEs between U and V are:

• There may be values represented in U that are have no corresponding representation in V (the
mapping from V to U may not be onto). One example of this is in sporting events which keep
track of events by the game clock. There is no “game time” for anything that happens while the
clock is stopped. Another example is screw sizes: a screw that is physically between standard
sizes has no “size.”

• Suppose U has more elements than V, even though they cover the same space. Then a conversion
from U to V loses information. For example, if letter grades A-C map to Pass and grades D-F map
to Fail, then information is lost in a conversion from B to Pass: the conversion from Pass back to
A-C is ambiguous.

• Even though U and V cover the same space and have the same number of elements, if the bound-
aries between categories in U and V do not line up, then the conversion between U and V loses
information and the conversion back is ambiguous. Draw a picture.

Note that some of these difficulties are present even when one set is the rational numbers. Thus, a
conversion mechanism will encounter difficulties whether it employs a “star” conversion topology, with
the rationals at the center, or a point-to-point topology.

These ambiguities will result in a loss of precision. There is a spectrum of loss, from the spacing
between machine-representable numbers to 100%, and an equally wide spectrum of tolerance among
users for such loss. There is thus no single solution to these difficulties.

The incomplete and ambiguous mappings cannot be performed automatically. A system must either
refuse to perform these, or ask users to provide their own conversion routines.

34.12 Absolute Significance of Relative Magnitude

This is meant to support Section 34.7, but I’m not sure of its place.

118

Bridgman [9] states that any quantification scheme subject to dimensional analysis must have the
property that if a unit twice as large is chosen, the resulting numbers are half as large. St Q Isaacson
[25] restate this as: the relative magnitude of two quantities must be independent of the unit used.
Both authors call this the principle of “absolute significance of relative magnitude.” If a scheme for
mapping quantities to symbolic representations obeys this principle, then any dimension can be repre-
sented as a product of powers of the reference dimensions.

From Bridgman we have:

1. measure(x, nu) = 1/n measure(x, u)

for all x and u. Let u1 = n*u2. Then:

2. measure(x, u1) / measure(y, u1) = (1/n * measure(x, u2))/(1/n * measure(y, u2))

= measure(x, u2) / measure(y, u2)

This is St Q Isaacson’s principle.

We can also prove a sort of linearity property. From the definition of measurement via units we have:

3. measure(x, u) = 1/measure(u, x)

thus

4. measure(y*x, u) = 1/measure(u, y*x)

= 1/(1/y * measure(u, x))

= y / measure(u, x)

= y * measure(x, u)

[I suspect this follows if we know that # is associative and commutative. See Section 11.1.9. Bill.]

34.13 SI Conformance

One can build a system with selectable levels of conformance to the guidelines in [1]. At minimum it
would recognize all the SI dimensions and units. At another level it might generate outputs which
always follow SI recommended practice. At a still stricter level, it might reject input which was not in
conformance with SI recommended practice.

34.14 Administration of Systems

This section needs more structure. Organize according to operations or operators? (hopefully not
both). The more I look at this, the less I think it adds to the paper. Maybe this section should simply
acknowledge the existence of this level of configurability, say that a system will need to allow an
administrator to read/write/add/delete/set-default for each thing at that level of configurability, and
stop there.

There are at least three levels at which a system supporting dimensioned data might be configurable.
First, some things will be built-in (not configurable). Examples of these are:

• The compatibility rules for ordinary dimensions.

• A basis set of dimensions and units.

• Whether a system supports specialized dimensions.

Second, other things may be configurable, but only by an administrator, not by users (operators or
programmers). Examples of these are:

• Dimensions and units beyond the basis set.

119

• Whether a system supports specialized dimensions.

• The compatibility rules for specialized dimensions.

• Default dimensions.

Third, still other things may be configurable by users. Examples of these are:

• Default dimensions.

• Dimensions and units beyond the basis set.

In this section we discuss the things which may be configurable by an administrator.

34.14.1 Operations

The tasks an administrator might have to do: Add, remove, list, edit, set defaults for …

34.14.2 Operands

The things he might have to do them to. Dimensions, Units, Vectors and their coordinate systems,
input rules and representations, output rules and representations.

35 My Height: A Model For Numeric Information
(March 1993)

35.1 Introduction

Units of measure and data types have always been awkward to integrate into database schemas. It's
especially tricky in object models, with their insistence on a clean separation between interface and
implementation: on which side do units and data types belong? The problem surfaces yet again in
dealing with domain mismatch when integrating heterogeneous data sources.

An elegant approach treats units and data types as distinct constructs in their own right, mapping in
two stages from abstract magnitudes to communicable and recordable symbols.

35.2 The Problem

I am six feet or 72 inches tall. How should that be modeled in a database schema, object oriented or
otherwise? Although different sorts of data models use different syntaxes, a property such as birth-
place or height is always describable as some sort of mapping between kinds of things:

Birthplace: Person → City,
Height: Person → ????.

What exactly does height map to? To begin with, do we mean 6 feet (an integer) or 6.0 feet (a “real”)?

Height: Person → Integer?
Height: Person → Real?

Are Real and Integer types in the same sense as Person and City? What is the relationship between
Real and Integer data types? In type graphs, we tend to show Real and Integer as disjoint types, having
no instances in common. But in the “real” world of mathematics, integers are a subset of the reals, i.e.,
the number 6 is both an integer and a real number. Do we really believe that the integer 6 and the real
number 6 are different things? Are we confused between different numbers and different ways of repre-
senting numbers?

We're also confused about the names of our data types. “Real” is a misnomer; at best we might be
talking about the rational numbers, not all the reals. To be more precise, we are talking about a subset
of the rational numbers expressible with a finite and usually fixed precision. Some languages call these

120

Floating Point, or Decimal, although Decimal sometimes means integers represented in the base ten,
rather than two or eight or sixteen. (The actual set of data types isn't what we want to focus on; we'll
pick some arbitrary set for discussion purposes.)

Beyond that, what do we do about feet and inches and meters? What is the type of the value of the
height property? We might introduce types like Feet and Meters, or Height_in_Feet and
Height_in_Meters…

Height: Person → Feet?
Height: Person → Meters?
Height: Person → Height_in_Feet?
Height: Person → Height_in_Meters?

If the height of people is expressed in feet and the height of buildings is expressed in meters, do they
or don't they have the same sort of values for the height property? In some sense, we'd like to say the
height of anything is a distance.

Where would we put such types in a type graph? Sometimes we put them in as subtypes of the numeric
types. Does that make sense? Are heights and weights and ages numbers? Or are they some other
concepts, whose measurements are expressed in numbers? Distance is essentially a space between two
points, not a number. Weight is essentially a heaviness, not a number.

35.3 A Three-Stage Process

Abstractly, we can describe a simple three-stage process to deal with all this. In the first stage, the
value of a property such as my height is simply a distance, i.e., a space between two points. Picture the
answer being given by someone with arm extended, palm down, saying “So high.” No joke. That is the
direct answer to the question of how tall I am.

The second stage is measurement, mapping this into numbers. Units of measure are different ways of
mapping such things into numbers, yielding different numbers for different units. The numbers are
still abstractions, not represented in any particular data type. If we ask someone my height in feet,
imagine him holding up all the fingers of one hand and the index finger of the other: “This many.” If
we ask my height in inches, you'll have to imagine seven people holding up all their fingers, with yet
another person holding up his thumbs, all saying “This many”.

The third stage is representation. The number of feet in my height would be written as 6 in decimal,
VI in Roman, 110 in binary, 111111 in unary, six in English, seix in Spanish, and so on. (I'm ignoring
quoting conventions; that's another level of complexity, which we don't need to tackle here.)

We're trying to discuss concepts, but we can't communicate without using some form of representation.
So let's say that, for the moment, /—/ represents an abstract distance corresponding to my height,
while * represents an abstract number corresponding to the number of points in a snowflake. The three
stages can then be summarized as

Height(Bill) = /—/
Feet(/—/) = *
Decimal(*) = 6.

We can talk about Height(Person), or even Height(Bill), as an abstraction. That's okay so long as we
only want to think about my height, as an abstract concept. As soon as we want to communicate it or
record it, we have to make it more concrete and put it into some form of representation, requiring an
intermediate stage of measurement.

Imagine the following dialog with a somewhat perverse computer:

You: Do you know Bill’s height?

Computer: Yes.

121

You: Well, would you show it to me, please?

Computer: I can't. The screen's not big enough to display two points such that the distance
between them is the same as Bill’s height.

You: Listen, all I want is a number.

Computer: What number? Bill's height is a distance, not a number.

You: Would you please measure Bill's height!

Computer: Certainly. What units shall I measure it in?

You: Feet will do nicely, thank you.

Computer: All right.

You: Well, could you please show me the answer?

Computer: Sorry, I don't have any fingers to hold up. I can only display character graphics on
your screen. In what sort of displayable symbol would you like the number represented?

You: A decimal integer, for Pete's sake.

Computer: Sorry, I'll try to remember that that's what you expect next time. The answer is 6.

You: Well, thanks a lot.

35.4 Measurements And Data Types

Let's use “magnitude” to mean a measurable abstraction such as distance, weight, chunks of time, and
so on, before it gets measured or represented. Let's also agree that “number” means an abstract quan-
tity, not expressed in any particular notation. Then we have:

Units of measure are functions that map magnitudes into numbers:

Feet: Distance → Number
Inches: Distance → Number
Meters: Distance → Number
Miles: Distance → Number

Pounds: Weight → Number
Grams: Weight → Number
Kilograms: Weight → Number

Quarts: Volume → Number
Gallons: Volume → Number

Degrees: Angle → Number
Radians: Angle → Number

…

Thus, for a given distance /—/, the mappings

Feet(/—/)
Inches(/—/)
Meters(/—/)

each yield a different (abstract) number.

number
datatypemeasure

magnitude symbol

122

Data types, in turn, are functions that map abstract numbers into character string symbols. If %
denotes the number of inches in my height, then we might have

DecimalType(%) = 72,
OctalType(%) = 110,
HexType(%) = 48.

A data type has two aspects: a set of symbols and a mapping from numbers into that set. The set of
symbols is typically defined as the finite sequences of characters from a specified character set. Hexa-
decimal symbols are defined over the set of characters {0-9,A-F}. The corresponding mapping is then
defined as

 HexType: Number → Hexadecimal.

Dates need similar clarification: are we talking about a certain day, or a particular way of representing
it? My birthday is a certain particular day in the past, which has its own abstract existence in the same
way as the number ten. That day is that day. There are lots of ways to represent it: February 19, 1936;
2/19/36; 19-Feb-36; 19360219; 50/1936 (the 50th day of 1936); the 12,803rd day in the 20th century;
etc., etc., etc. Each of those corresponds to a different data type. We don't think of them as being
different entity types, different kinds of things. They are just different representations of the same
abstract concept.

As a matter of fact, we even have a kind of measurement concept for dates. Before we can represent a
date, we have to pick a calendar in which to “measure” it. Dates come out quite different in the Grego-
rian, Chinese, Jewish, and other calendars, not to mention the various forms used inside computers.
Each uses a different sort of “yardstick”, as well as a different origin as reference point. Our calendar
“measure” is analogous to an odd sort of yardstick, as though the three feet in a yard each had their
own name, and each contained its own number of inches. So our year is divided into twelve months,
each being named, and each having its own number of days.

Thus we again have a two stage process: pick a calendar in which to “measure” a day, then pick a repre-
sentation format for the date within that calendar. Keeping this date analogy in mind might make it
easier to understand the treatment of other numeric quantities.

35.5 Three Levels Of Abstraction

We can draw a fine line between concept and realization.

Suppose you ask me if I know how tall I am. I say yes; an idea forms in my mind, capturing in an inde-
scribable way some notion of a particular degree of “bigness”. But in order to tell you how tall I am, I
ultimately have to transform that notion into something very concrete, involving very real matter and
energy, which will have some impact on your eyes, ears, muscles, or other physical receptors. The same
is true if I want to record that information somewhere, so you can get at it later on. Information has to
be converted to very tangible configurations of matter and energy.

Symbols are an intermediate stage of that transformation from concept to material communication.
Symbols make it possible for me to tell you how tall I am without having to scratch a mark on the
ground as long as my height, and to tell you how much I weigh without having to hand you a rock as
heavy as I am. Symbols are at the boundary between hardware and software. Software deals with
computer systems as symbol manipulators; hardware implements symbols in the electrons, holes, and
magnetic fields in silicon, copper, phosphors, etc.

Symbols are also at the interfaces of computers. For our purposes, a symbol is anything that can pass
across a communication or storage interface of a computer. Technological advances are rapidly
expanding the domain of such symbols to include sounds, pictures, cursor movements, finger touches,
hand-drawn script, and so on. For our immediate purposes, we can concentrate on symbols formed as
linear sequences of characters. Such symbols can represent elementary concepts, aggregates that orga-

123

nize the elementary concepts into useful information, and procedures to be executed by the computer
in processing information. This paper focuses on symbols representing elementary concepts.

Of these three levels of abstraction — conceptual, symbolic, and material — only the first two are rele-
vant to data modeling. We'll say that conceptual specifications describe information at the conceptual
level, while concrete specifications describe the symbolic level (admittedly an abuse of metaphor, but
the alliteration is attractive).

35.6 Conceptual And Concrete Specifications

We are now in a better position to differentiate between conceptual and concrete information specifi-
cations. This applies to any sort of data model, object-oriented or not.

Conceptual specifications describe the information to be maintained inside the computing system.
Concrete specifications tell how to map that information into symbols which can be recorded, or which
can be communicated between the computer and users. Note that concrete specifications apply to two
facets: how the computer communicates at interfaces with users, and how the computer records infor-
mation internally in storage media:

For our purposes, the communication side includes delivery of information into variables in an appli-
cation's program space, and also the encoding of parameters for requests to be sent to the information
system. Thus a conceptual specification might define operations for getting and setting the height of a
person, or for moving a vertex, as

Height: Person → Distance
Height: Person ← Distance
Move: Vertex, Distance, Direction → Location

without specifying units or data types for any of the parameters. (That syntax is illustrative only, and
should not provoke discussion of the semantics of attributes or update.) In an object model, that might
be the form of an abstract object interface.

Conceptual specifications suffice to describe algorithms, procedures, and other relationships in the
information. For example, operations can be specified to compare heights, or to add and subtract them,
without reference to representation in terms of units or data types. The expression

 Height(Bill) - Height(George)

is a meaningful operation on distances, not numbers. The result is an abstract distance, i.e., a space
between two points (the tops of our heads? — there's a joke there).

Concrete specifications, augmenting conceptual specifications with units and data types, would define
external interfaces, which might be characterized as client or application or presentation or communi-
cation interfaces.

This configuration corresponds nicely with the ANSI three-schema architecture 9.. The client interface
is the external view, the conceptual specification is the conceptual view, and the storage specification
is the internal view. Both the client and storage specifications are concrete.

Data independence arises from the separability of the concrete specifications for external and storage
interfaces, being linked via the conceptual specifications. A given conceptual specification can be

conceptual
specification

information concrete
specification

concrete
specification

recordingcommunicating

124

implemented in different storage specifications, involving different units and data types (as well as
different data structures and program code). These differences might arise serially, as when an appli-
cation is ported to different environments or underlying implementations are tuned for performance.
Different implementations might also be experienced concurrently, as in multi-database integration.
There can also be different external specifications, involving different units and data types, as well as
different display structures, e.g., tables, pie charts, and bar charts.

In practice, an “access path” can be compiled for a particular pair of external and storage specifications,
allowing for efficient execution of a single composite mapping.

This configuration contrasts with current object models, which lump the client interface and the
conceptual specification into a single notion of object interface. The storage specification then corre-
sponds to implementation.

Though the partitioning is correct, this description is oversimplified by neglecting data structures and
procedures.

It might be more accurate to describe current object models as.

That is, an object interface includes the client's concrete interface, and an implementation includes a
description of the object interface it implements. This configuration allows only one client interface,
but many storage interfaces, for a given conceptual specification.

35.7 Conceptual Specifications

Conceptual specifications describe the categories of things occurring in the information, and the asso-
ciations defined among those categories of things.

From the conceptual point of view, magnitudes such as distances, weights, time intervals, velocities,
angles, etc., are all very distinct kinds of things, and all distinct from the notions of numbers. This is
in keeping with a fundamental principle that distinguishes object models from value-based models:
things have an existence and identity apart from the values of their properties. People exist indepen-
dently of their social security numbers or employee numbers. Colors exist independently of the names

conceptual
specification

information concrete
specification

concrete
specification

recordingcommunicating

OBJECT INTERFACE IMPLEMENTATION

conceptual
specification

information concrete
specification

concrete
specification

recordingcommunicating

OBJECT INTERFACE

IMPLEMENTATION

125

we might call them. So then does a certain distance, or a certain degree of heaviness, exist apart from
the units in which they are measured. So also do numbers exist apart from the symbols we use to repre-
sent them 7..

Our ontology of concepts includes such categories of things as persons, employees, colors, distances,
time intervals, velocities, angles, real and imaginary numbers, rational numbers, integers, and so on.
We know some relationships among these categories: employees constitute a subset of persons, and the
integers are a subset of the rationals which in turn are a subset of the reals.

A diagram of this conceptual ontology might take the form

Symbols are themselves concepts, since we can think about character strings and numerals. For illus-
trative purposes, we might subdivide symbols into such things as images, sounds, and strings over
various character sets. Aggregates such as multisets, sets, and lists are also abstract concepts. So also
are programs, a generic term for various concepts expressing behavior. Thus the ontology might be
extended with

The strings are sets of characters drawn from various character sets. Thus Hexadecimal contains
strings over the set {0-9,A-F}.

Associations (mappings, functions, perhaps even operations) are defined in terms of the categories of
things they associate. (In this paper we neglect further specifications of the criteria or algorithms
which determine such associations, such as procedure bodies, constraints, or pre- and post-conditions.)

The concept of height is an association between persons and distances:

Concept

Person Color Magnitude Number

Employee
Distance

Area
Volume

Weight
Time_Interval

Speed
Angle Real Imaginary

Rational

Integer

Concept

Symbol

List Multiset

ASCII

Alphanumeric

Roman

Hex Decimal

Octal

Binary

Binary

Alphabetic

Aggregate

Set

Program

String Picture Sound

126

 Height: Person → Distance.

The concept of name is an association between persons and alphabetic strings:

 Name: Person → Alphabetic.

An operation for moving a vertex would also be defined here:

 Move: Vertex, Distance, Direction → Location.

At this conceptual level, we also understand the concepts of measurement and representation. Thus
the following sorts of associations would also be in the conceptual specifications:

Feet: Distance → Number
Inches: Distance → Number
Meters: Distance → Number
Miles: Distance → Number
Pounds: Weight → Number
Grams: Weight → Number
Kilograms: Weight → Number
Quarts: Volume → Number
Gallons: Volume → Number
Degrees: Angle → Number
Radians: Angle → Number
…

HexType: Number → Hexadecimal
OctalType: Number → Octal
…

That is, the notions of measuring magnitudes and representing numbers are understood at the concep-
tual level. What isn't specified at the conceptual level is how such things as the heights of people are
measured or represented.

35.8 Concrete Specifications

The conceptual specification treats the computer as a black box full of information. We don't yet know
how it records or communicates the information. To design mechanisms for recording or communi-
cating, the conceptual specification needs to be augmented with concrete specifications mapping all
information into symbols. Otherwise we don't know how to tell the computer how tall I am, how the
computer will remember that, or how the computer will pass that information on.

Given a fact abstractly specified as

Height: Person → Distance,

the description of how to implement this fact in stored data, or how to communicate it in response to
an inquiry, needs to be augmented in some form such as

Height: Person → Binary(Feet(Distance)),

or

Height: Person → Decimal(Inches(Distance)).

As a syntactic device to emphasize the separation of conceptual and concrete specifications, we could
employ a notation such as

Height: Person → Distance ⇒Feet⇒Binary,
Name: Person → Alphabetic.

127

A vertically aligned notation might make it easier to map multiple parameters:

In that format, it might also be easier to distinguish conceptual and concrete portions of the schema,
since they occur on separate lines. Different concrete specifications (implementations) can be obtained
simply by replacing the “concrete” lines of the specification. (More elaborate implementation specifica-
tions would include data structures and method code. That could be addressed in another paper.)

The mapping to concrete specification is not always a simple two-stage mapping. Clearly if the infor-
mation is already symbolic, as with names, then no mapping is required at all. If the information is
already numeric, as with counts (e.g., inventories) or ratios, then no measurement is involved, but data
type mapping is still required.

Complex magnitudes, on the other hand, might involve more than two levels of mappings. Locations
in two dimensions might be measured either in rectangular or polar coordinates (first level of
mapping). For either of these, the distances and angles involved themselves go through two more
mappings for measurement and representation.

There is potentially yet another level of mapping, for such things as edit formats or masks, e.g.,

• Money: currency symbol, periods and commas, leading blanks and zeros.

• SS Nums: embedded dashes.

• Dates: various format embellishments.

• Names: First, Last, Initials.

These might be handled as a specialization of data types, but probably better handled as a separate
level of mapping. These are symbol-to-symbol maps.

With conventional documentation techniques, it's difficult to maintain consistent replicas of the
conceptual specs together with each different set of concrete specs in which it is realized. (E.g., class
definitions are sometimes said to incorporate type definitions.) Modern media management techniques
can alleviate this, allowing a single “master copy” of the conceptual specification to be overlaid with
different concrete specifications.

35.9 Real Computations

The units and datatype functions described above are hypothetical abstractions, fictions and figments
of our imaginations. They might be executed in our minds, but never in any real computers. Real
computations are mappings among symbols, not among magnitudes or abstract numbers. There is no
real operation that converts a height to an abstract number, or converts an abstract number to its
decimal representation.

Instead of datatype mappings between numbers and symbols, we have type conversions between
symbols in the compiled composite mappings between external and internal specifications. In prin-
ciple, the conversion from hex to decimal involves mapping a hex symbol to the abstract number it
represents, and then to the decimal representation of that number:

symbol(in hex) → number → symbol(in decimal).

Move: Vertex, Distance, Direction → Location

cm degrees rect_coord = <distance, distance>

oid decimal cm

decimal

cm

decimal

128

In practice, of course, there's only one computation, directly from one symbol to the other:

symbol(in hex) → symbol(in decimal).

The same is true of units conversions. A conversion from feet to meters never materializes an actual
abstract distance as an intermediate result. The conversion first accounts for data type differences, and
then maps from the representation in feet to the representation in meters.

Real requests typically involve a chain of computations beginning and ending with symbols: input
data, output data, or stored data. Intermediate results can be opaque (not specifying units or data
types), but the computation is ultimately governed by a pair of representations at the beginning and
the end. That determines the conversions required; the intermediate mappings to magnitudes and
abstract numbers need never be visibly (concretely) executed.

35.10 Blurring The Distinction With Precision

If I'm six feet tall, then I'm also 1.8288036 meters tall — more or less.

Numbers map into symbols imperfectly. Communication and storage media can't handle infinitely long
symbols. They work best with symbols of bounded length, limiting the precision with which numbers
can be represented. Thus it might only be possible to store or communicate integers between 0 and 231.

Constrained precision blurs the clean line we try to draw between conceptual and concrete specifica-
tions. Sometimes that's handled by implicit conventions; while the conceptual specification may say
integers are supported, everyone “knows” certain integers are too big to handle. This may be spelled
out as an implementation restriction in a software manual, or it may be “common knowledge” based
on the word length of the underlying computer.

A certain amount of respectability is gained by abstractly defining finite subsets of numbers, such as
short and long integers, or 31-bit integers, in signed and unsigned variants. These at least have the
merit of defining the populations abstractly in the conceptual specification, even though they are
induced by underlying implementation constraints.

Such compromises are a fact of life we endure all the time. You can't hide implementation completely.
It keeps sneaking in between the cracks, nudging us with “implementation restrictions”. As hard as
our calculators and computers try to implement the model of arithmetic, the best they can do is finite
calculation. Truncation and roundoff keep intruding non-arithmetic behavior: 3*(1/3) comes out
0.9999999999, not equal to 1. We don't alter our concept of arithmetic because of that.

35.11 Blurring The Distinction With A Need To Know

Sometimes a client interface will not specify a desired unit of measure or data type. This may be
because it is implicitly assumed that the stored data satisfies the client's needs (data dependence), or
because the client wishes to accept the data in whatever form it is stored to avoid conversions. In the
latter case the concrete specification may include the units and/or data types as data items, making
the mappings more complex. In effect, the concrete specification may take the form

Height: Person → Symbol x Measure x Datatype,

where the Measure and Datatype information might have to map to something in the mapping
between the conceptual and storage specifications. This more complex situation bears further investi-
gation.

35.12 Curried Equivalences: Alternative Models

The essential point is to recognize magnitudes, units of measure, numbers, data types, and symbols as
distinct constructs. Measures and data types don't have to be modeled as functions.

129

Alternative models can be developed in terms of curried equivalences, which define a kind of equiva-
lence transformation which can exist at the schema or model (meta-schema) level. At the schema level,
it accounts for one sort of schema mismatch in integrating heterogeneous databases 8.. At the model
level, it can define some equivalences among different models.

The general idea is that, given a function

 f: X, Y → Z,

there exists a set of functions

 fi: Y → Z,

one for each member xi of X, such that

 fi(y) = f(xi,y).

Conversely, given a set of functions having similar signatures

 fi: Y → Z,

there is a corresponding set of objects X containing one xi for each fi, and a function

 f: X, Y → Z

such that

 f(xi,y) = fi(y).

We will make use of the converse transformation. Let's relabel the units of measure discussed above
as InchesF, FeetF, MetersF, etc., to emphasize that they are functions:

InchesF: Distance → Number
FeetF: Distance → Number
MetersF: Distance → Number.

Those are the fi, with Y being Distance. For X, we can introduce a set of Units whose members xi are
InchesU, FeetU, MetersU, etc. For f, we introduce a new function Measure:

Measure: Units, Distance → Number

such that

Measure(InchesU,d) = InchesF(d)
Measure(FeetU, d) = FeetF (d)
Measure(MetersU,d) = MetersF(d)

Conceptually, this formulation makes the process of measurement an explicitly visible activity, with
the units of measure being passive participants (parameters). It is also more conducive to allowing
units of measure to be stored with self-describing information. This latter might arguably be a more
satisfying intuitive treatment, but there is nonetheless an equivalence mapping into the model devel-
oped earlier.

Data types can be treated similarly, using Represent as the collective function:

Datatype = {Integer, Hex, Octal, …}

Integer: Number → Symbol
Hex: Number → Symbol
…

Represent: Datatype, Number → Symbol

130

Represent(Integer,n) = Integer(n)
Represent(Hex,n) = Hex(n)
…

In this approach, the graph of conceptual categories is extended to include measures and data types:

The two approaches can be unified if we don't mind letting functions also be things which themselves
can occur as arguments to other functions. The members of Measure and Datatype could themselves
be functions, such that InchesU is in fact InchesF. Then Measure and InchesF could both be functions,
with the equivalence

 Measure(InchesF,d) = InchesF(d)

35.13 Conclusions

Units of measure and data types are distinct constructs which map magnitudes into symbols. This
approach eliminates a lot of confusion in conceptual information specifications, whether in the context
of the ANSI three-schema architecture or in the context of abstract object interface specifications. The
approach also facilitates a systematic treatment of domain mismatch for multi-database integration.

Magnitudes such as distance, weight, and time are distinct concepts, distinct from the numbers that
measure them and from the symbols that represent those numbers. They are related to the properties
of objects by all or some of the following mappings:

In conceptual specifications, information involving magnitudes is expressed purely in terms of those
magnitudes:

e.g., Height: Person→Distance.

Concrete specifications are required to map these into symbols both externally for communication with
clients and internally for recording in storage implementations. Concrete specifications use units of
measure and data types to map magnitudes into symbols:

Data independence is obtained through the independent mappings of external and internal interfaces
to the conceptual model. Current object models already separate object interfaces from implementa-
tion. One further distinction is required, separating the abstract object interface from client interfaces.

Domain mismatch in multi-database integration can be handled in similar steps. Correspondence
between attributes should first be established at the conceptual level in terms of common magnitudes,
e.g., distance or weight or time, etc. Then the units of measure and data types used to implement these
can be identified, with appropriate conversions specified.

35.14 References

7. William Kent, “A Rigorous Model of Object Reference, Identity, and Existence”, Journal of Object-
Oriented Programming 4(3) June 1991 pp. 28-38.

Concept

Measure Datatype

number
datatypemeasure

magnitude symbol
property

object

magnitude
property

object

number
datatypemeasure

magnitude symbol

131

8. William Kent, “Solving Domain Mismatch and Schema Mismatch Problems With an Object-
Oriented Database Programming Language”, Proc. 17th Intl. Conf. on Very Large Data Bases, Sept.
3-6, 1991, Barcelona, Spain.

9. D. Tsichritzis and A. Klug (eds), “The ANSI/X3/SPARC DBMS Framework. Report of Study Group
on Data Base Management Systems”, AFIPS Press, Montvale NJ, 1977.

36 The Grass-roots Basic Research Program Project
Rezal Rahmen (Stanford University) assisted us on this project in the summer of 1995 under a grant
awarded by the Hewlett-Packard Laboratories Grass-roots Basic Research Program (GBRP).
Following are the initial project proposal and the slides of the final presentation.

36.1 The Proposal

GBRP PROPOSAL – DIMENSIONED DATA: BEYOND DIMENSIONAL ANALYSIS

Investigators:

Bill Kent, HPL/CRC/STL/AED Advanced Object Practices project
Stephanie Leichner, CSO/SBU/SESD
Bruce Hamilton, HPL/MRC/IPL Measurement Systems Dept.
Dan Hepner, CSO/CSG/GSY/GSSL High Availability Core project

This proposal begins by describing a larger research context, and ends by defining a small subset as a
candidate GBRP for this year.

While measurement constitutes 1/3 of MC2, HP has no coherent theory of measurement, and no scien-
tific research into its foundations. Traditional dimensional analysis is too limiting.

For example, fuel consumption in gallons per mile is a volume divided by a length, yielding length2,
which is area. Traditional dimensional analysis therefore considers fuel consumption equivalent to
area, meaning that the two can be freely added and compared, and one can be assigned to the other. Is
adding fuel consumption to area any more sensible than adding area to volume? Similar anomalies
arise with paint coverage (gallons/square foot) and length; licorice productivity and speed (miles/hour);
and work and torque (both are force * distance, yet they are not equivalent).

There are a host of dimensions which are “dimensionally equivalent” without being semantically
equivalent. They aren’t compatible with each other, even though dimensional analysis says they are.
A potential solution under investigation takes the form of “specialized dimensions”. Speed and linear
productivity could be defined as distinct specializations of length/time. Making them distinct renders
them incompatible, while recognizing a common parent lets them inherit common units.

The opposite problem exists, too. There are dimensions which are semantically equivalent, and should
be compatible, even though they aren’t dimensionally equivalent.

If I have a cup of salt and you have a pound of salt, it makes sense to ask who has more salt, and we
could figure out how much salt we would have if we added mine to yours. But dimensional analysis
wouldn’t allow us to compare or add a volume and a mass, even though both are notions of “amount”.
Similar things could be said about concentrations and unit costs.

Mass and volume can be converted once the density of the substance involved is fixed. The approach
being considered here is to introduce a “quasi-dimension” such as “amount”, defined as a generalization
of such things as mass and volume (and perhaps length or area, if the subject is rope or carpeting).
Once the conversion parameters are fixed for a given computational context, the members of a quasi-
dimension can be converted in much the same way that the units for a given dimension can be
converted. Beyond “amount”, other quasi-dimensions include such things as “concentration”, “unit

132

price”, and “travel distance” (often expressed as either distance or time, as on AAA maps; astronomical
distances also are expressed as either distance or time). This has important applications in many
industrial settings, and in the medical context, where medication dosages are routinely converted
between different dimensional forms.

There are other sorts of theoretical concerns as well:

• Dimensional analysis treats dimensionless quantities such as shrinkage (length/length), clock
accuracy (time/time), and angle (also defined as length/length) as being dimensionally equiva-
lent.

• Support for dimensioned data in programming languages should be extensible, allowing the defi-
nition of new units and dimensions (e.g., money). What are the criteria for determining whether
a proposed measurement domain fits the computational model provided for dimensioned data?
Why or why not will such a system be able to support measurement of color, performance,
usability, complexity, velocity, and others? The decision would be facilitated by a set of axioms
describing the fundamental behavior of measurement domains, against which any candidate
domain can be tested.

• Arithmetic behaves differently in different measurement domains. 40 degrees C is sometimes
equivalent to 104 degrees F and sometimes to 72 degrees F. An angle of 400 degrees is sometimes
equal to 40 degrees, sometimes not. Subtracting a larger length from a smaller one is sometimes
legal, sometimes not. Extension of the axiomatic system mentioned above, as well as introduc-
tion of yet other relationships among dimensions, would explain some of these behaviors.

• An underlying semantic model which clearly differentiates physical quantities, units, and repre-
sentations provides a coherent basis for the definition of computational support.

These concerns will not be elaborated in this brief proposal. They are part of longer ongoing work. This
work has been in progress for some time on a voluntary basis, outside the scope of current projects.
Potential deliverables:

• Specifications for type system extensions and computational models in programming languages.
It could become a class library for object-oriented languages.

• Enhancements to application analysis and development methodologies.

• Contribution to scientific knowledge, extending the theory of dimensional analysis.

Either or both of the following two tasks would be a feasible GBRP project. Both have to do with
specialized dimensions and quasi-dimensions as described earlier:

 1. Develop a test suite and validate the approach for a number of interesting cases.

 2. Develop specifications and language bindings in one or more languages for the implementation of
these features.

A summer student for this project should be competent in programming language type systems.

133

36.2 The Final Presentation

Dimensioned Data Investigation
Background:

Started in 1993.

Rafiul Ahad (CSY) sought support for dimensioned data in
OpenODB for POSC.

Continuing now as an unfunded background effort.

Present investigators:

Bill Kent, HPL/CRC/STL/AED DADO project

Stephanie Leichner, CSO/SBU/SESD

Bruce Hamilton, HPL/MRC/IPL Measurement Systems Dept.

Dan Hepner, CSO/CSG/GSY/GSSL High Availability Core proj.

Status:

In progress. 125-page workbook.

Focus
Fundamental semantics.

Beyond traditional problems of units conversion, precision,
accuracy, etc. (But they still need attention.)

Emerging themes:

• Basic model for supporting dimensional computation.

• Anomalous behaviors within dimensional analysis...

- Specialization

- Generalization

- Siblings
• Axiomatic foundation.

• Non-simple structures: vectors, aggregates.

• Skeletons in the closet.

Basic Model of Dimensional Analysis Support

Fundamental principles:

A measured quantity is a distinct entity from the various
measurement expressions that represent it.

Treat dimensions as types.

Anomalies

Incompatible Dimensions Look Compatible

Work and Torque both have the form Force x Distance (ML 2/T2).

Fuel Consumption (gallons per mile) is Volume/Length, i.e., Area.

Paint Coverage (gallons/sq ft) is Volume/Area, i.e., Length.

They shouldn’t be compared or added.

But they are compatible under dimensional analysis.

Solution: Specialized dimensions.

Subject of the GBRP summer investigation.

Anomalies

Compatible Dimensions Look Incompatible

If I have a cup of salt and you have a pound of salt, who has more?

You and I can figure that out, but dimensional analysis can’t handle
it. Volume and weight are incompatible.

Solution: Generalized dimensions.
(Substance dependent, of course.)

Important applications in medicine, industry.

Computational Anomalies

Temperature: 0 °C is 32°F or 0°F?

Angles: is 400 ° the same as 40 °?

Weights: is (5 lbs - 10 lbs) a legitimate weight?

Solution: differentiated dimensions:

• Temperature point vs. temperature interval.

• Rotational angle vs. circular angle.

• Weight vs. buoyancy.

134

Axiomatic Foundations

Purpose:

• Explain behaviors of differentiated dimensional domains.

• Criteria for determining whether and how new dimensions can
be supported.

Money, color, performance, efficiency, usability, ...

Basic approach: characterize the behaviors of measured quantities
without assuming they behave like numbers.
Justify modeling them with numbers.

What is Specialization

• Specialization involves creating a type hierarchy for
dimensions that share a common base dimension.

• For example, Energy, Work, and Torque share the common base
dimension

mass x length 2 x time -2

Why Specialize?
• Distinguishing dimensions that share a common parent.

• Error detection during compilation.

Without Dimensional Analysis:

boolean: b;
real: A, l, w, wt;
/* area, length, width, weight */

A := l*b; <---- error caught
A := l*w; <---- ok
A := l*wt; <---- error undetected

Ordinary Dimensional Analysis:

length 2: A;
length: l, pc; /* paint coverage gals/sq ft */

A := l*wt; <---- error caught
A := l*pc; <---- error undetected

Specialization:

length: l;
length 2: A;
paint_coverage: pc;

A := l*pc;

But there are problems...

Problems with Specialization

width: w;
height: h;
length: p; /* perimeter */

w := h; <---- undesired operation

p : = 2(w+h); <---- desired operation

Specialization Rules

• Specialization rules are introduced to enable flexibility in
specialization.

• Rules enable specialized dimensions to be added or subtracted,
multiplied or divided, compared, and assigned to other
specialized dimensions.

135

Summary of Rules
Rule 1: Permit addition, subtraction or comparison among siblings.

Rule 2: Permit assignment among siblings.

Rule 3: Permit assignment from parent to child.

Rule 4: Permit assignment from child to parent.

Rule 5: Permit addition or subtraction between parent and child.

Rule 6: Permit comparison between parent and child.

Rule 7: Permit promotion prior to multiplication or division.

Note: Default is disabling all the rules above.

Conclusions re Specialization
• Specialization offers more refined type checking.

• Specialized dimensions are self-documenting.

• Degree of specialization depends on application.

• Specialization may be too restrictive but can be relaxed with rules.

• Deeper specialization tends to require more rules.

• Proposed rules are all useful at times.

• Scope of usefulness of rules is still unclear.

The Unary Dimension

A special case of specialization for dealing with dimensionless
dimensions.

“Unary” is a dimensionless base dimension (the “null” base
dimension).

Others are differentiated as different specializations of Unary:

- Angle (perhaps several)

- Clock rate error

- Strain

- Slope

- Some concentrations (e.g., volume/volume)

- Other ratios?

Generalization
Renders certain “incompatible” dimensions compatible:

• Amounts (weight, volume, length)

• Other families based on amount:

- Concentration (amount/amount)

- Price (money/amount)

- Dosage (amount/time)

- ...
• Travel intervals (time or distance)

• Pressure (psi or mm Hg)

• Astronomical distances (length or time)

Sibling Dimensions

The family of angles:

Rotational Circular Interior Heading

360°>180°>0° 180°>0°=360° 360°=180°=0° 360°=0°≠ 180°
x>y: error

280°+280°=560° 280°+280°=200° 280°+280°=160° 280°+280°: error

Axiomatic Foundations

Motivation

Why do computational paradigms work in some domains and not
in others?

Why do they work differently in different domains?

How can we assess the applicability of our paradigms to new
domains?

136

Axiomatic Foundations

Measurement Paradigms

- Units-based

- Counting

- Formula

- Judgement

- Other?

Axiomatic Foundations

Axioms for Units-Based Measurement

The attitude: verify , don’t assume, that the domain behaves
isomorphically to the real numbers:

- Well-defined equality (and hence differentiability)

- Combinational closure

- Coverage

- Order

- Zero
Others?

Complex Dimensions

• Vectors

• Aggregates

Skeletons in the Closet

An illustrative list of problems and anomalies that need to be dealt
with. See the workbook.

	I PROLOGUE
	1 Introduction
	1.1 What’s the Problem? (1)
	1.2 What’s the Problem? (2)
	1.3 What’s the Problem? (3)
	1.4 What’s the Problem? (4)
	1.5 What is Measurement? (1)
	1.6 What is Measurement? (2)
	1.7 Goals of Measurement Systems
	1.7.1 Symbolic Representations
	1.7.2 Operations
	1.7.2 Operations

	1.8 This Paper
	1.8.1 Goals
	1.8.2 Scope
	1.8.3 Approach
	1.8.4 Our Contribution to Dimensional Support
	1.8.5 Prior Work

	2 The Skeletons in the Closet
	2.1 Domain Semantics
	2.2 Units and Conversion
	2.3 Computational System Support

	3 Basic Concepts
	3.1 The Central Issue: Operational Consequences
	3.2 Quantities Are Distinct From Their Expressions
	3.3 Some Terminology
	3.4 Introduction to Units
	3.5 Dimensions as Types
	3.6 Precision and Accuracy
	3.7 Context

	II INTER-DIMENSION RELATIONSHIPS
	4 Independent (Orthogonal?) Dimensions: Dimensional Analysis
	5 Subtypes
	5.1 Unsigned and Signed Domains
	5.2 Others?

	6 Point and Interval Types
	6.1 (Old Material)
	6.2 Temperature; Zero-Origin Units

	7 Siblings
	7.1 The Family of Angles
	7.1.1 Rotational Angles
	7.1.2 Modulo Domains: Circular Angles
	7.1.3 Interior Angles
	7.1.4 Compass Headings
	7.1.5 Summary of Angles

	7.2 Other Examples

	8 Specialization
	8.1 Purpose
	8.2 The Specialization Relationship
	8.3 Compatibility Levels
	8.3.1 Strictest Enforcement
	8.3.2 Weakest Enforcement: Aliasing
	8.3.3 Parent/Child Assignment
	8.3.4 Multiplicative Promotion
	8.3.5 Additive Promotion
	8.3.6 Combinations

	8.4 Multiple Parentage
	8.5 Multi-Level Specializations
	8.6 The Unary Dimension and its Specializations
	8.6.1 Purpose
	8.6.2 Implicit Specializations
	8.6.3 Explicit Specialization
	8.6.4 Signatures
	8.6.5 Units

	8.7 Specialized Canonical Form
	8.8 Other Experiments With Specialization
	8.8.1 Another Approach to Work and Torque

	9 Generalization (Quasi-Dimensions)
	9.1 General Approach
	9.2 Compatibility
	9.3 Converting Among Canonical Forms

	10 Summary of Inter-Dimension Relations

	III MEASUREMENT PARADIGMS
	11 The Units-Based Paradigm
	11.1 Fundamental Properties
	11.1.1 We Know What It Is
	11.1.2 We Can Tell Them Apart
	11.1.3 There Is Total Order
	11.1.4 There Is Combinational Closure
	11.1.5 Monotonic Combination
	11.1.6 There Is A Natural Nil
	11.1.7 There Are Differences
	11.1.8 Subtraction: There May Or May Not Be Negatives
	11.1.9 Multiplication and L-Rational Lengths
	11.1.10 Continuity and L-Reachable Lengths
	11.1.11 Coverage
	11.1.12 Degenerate Units

	11.2 Variants Within the Units-Based Paradigm

	12 Vector Dimensions
	13 Aggregates
	14 Enumerations
	15 Non-Units-Based Measurement
	15.1 Counts

	16 Generalized Type Graph

	IV UNITS AND CONVERSION
	17 Units Stuff
	17.1 Units
	17.1.1 Straightforward Units
	17.1.2 More Complex Units
	17.1.3 Unit Names

	V COMPUTATIONAL SYSTEM SUPPORT
	18 Introduction
	18.1 Types of System Appropriate for Delivering Support

	19 Syntactic Matters
	19.1 Physical Quantity Expressions (PQEs)
	19.2 Additive PQEs
	19.3 PQEs With Non-numeric Units
	19.4 Vector Physical Quantity Expressions
	19.5 Units Recognition
	19.5.1 Derived Unit Names
	19.5.2 Prefixes

	19.6 Coordinate Systems

	20 Basic Computational Support
	20.1 Declaring Dimensioned Data
	20.2 Operating with Dimensioned Data
	20.2.1 Compatibility
	20.2.2 Mapping Between Physical Quantities and Physical Quantity Expressions
	Simple Units
	Other Units
	Inverse Mappings
	Substitutability

	20.2.3 Unit Conversions

	20.3 Input/Output
	20.3.1 Input of Physical Quantity Expressions (PQEs)
	20.3.2 Output of Physical Quantity Expressions (PQEs)

	21 Extensibility
	21.1 User-Defined Dimensions
	21.2 User-Defined Units

	22 Default Units and Data Types
	22.1 Units
	22.2 Numeric Format
	22.3 Numeric Type

	23 Specialized Dimensions
	23.1 Defining Specialized Dimensions
	23.2 Declaring Specialized Dimensions
	23.3 Operating With Specialized Dimensions
	23.4 Input/Output

	24 Quasi-Dimensions
	24.1 Defining Quasi-Dimensions
	24.2 Declaring Quasi-Dimensions
	24.3 Substance-Dependent Conversion Factors
	24.4 Operating With Quasi-Dimensions
	24.5 Input/Output

	25 Point Dimensions
	25.1 Defining Point Dimensions
	25.2 Declaring Point Dimensions
	25.3 Operating With Point Dimensions
	25.4 Input/Output

	26 Vector Dimensions
	26.1 Defining Vector Dimensions
	26.3 Operating With Vector Dimensions
	26.3.1 Compatibility
	26.3.2 Coordinate Transformation
	26.3.3 Comparison and Assignment
	26.3.4 Arithmetic

	26.4 Input/Output

	27 Aggregate Dimensions
	27.1 Defining Aggregate Dimensions
	27.2 Declaring Aggregate Dimensions
	27.3 Operating With Aggregate Dimensions
	27.4 Input/Output

	28 Accuracy, Precision and Context
	29 (Miscellany)
	29.1 Use of Systems
	29.2 Language Issues
	29.2.1 Recommended Functions and Features

	29.3 Representation Issues
	29.3.1 Unit Conversion
	29.3.1.1 Pairwise Conversion
	29.3.1.2 Conversion Within a Family

	29.3.2 Precision and Context
	29.3.3 Things to Represent
	29.3.3.1 Physical quantities
	29.3.3.2 Dimensions
	29.3.3.3 Units
	29.3.3.4 Conversions
	29.3.3.5 Coordinate systems
	29.3.3.6 Numbers
	29.3.3.7 Precision, Accuracy

	29.3.4 Levels of representation
	29.3.4.1 Input
	29.3.4.2 Output
	29.3.4.3 Storage

	29.3.5 Additive Physical Quantity Expressions (APQEs)
	29.3.6 Other Representation Issues
	29.3.7 Specialized and Quasi-Dimensions
	29.3.8 Expressions

	29.4 Performance Issues

	30 Conclusion
	31 Acknowledgments
	32 References

	VI OTHER POTENTIALLY USEFUL MATERIAL
	33 Peculiar Measurement Domains
	33.1 Angles
	33.2 Temperature
	33.3 Weight and Mass
	33.4 Time and Date
	33.4.1 The Essence of Time (June 1993)
	33.4.2 About Time (August 1992)

	34 Miscellany
	34.1 Types of Physical Quantities
	34.2 The Reference Rocks
	34.3 Combinational Closure
	34.4 Division and Rational Closure
	34.5 Information About Physical Quantities: Measurements
	34.6 Information About Measurements: Measurement Data
	34.7 Measurement Fundamentals
	34.8 General Functionality
	34.8.1 Physical Quantities
	34.8.1.1 Count
	34.8.1.2 Discontiguous Mappings

	34.9 Future Work
	34.9.1 Semantics
	34.9.2 Machinery

	34.10 Domains
	34.11 Conversion of Non-Numeric Units
	34.12 Absolute Significance of Relative Magnitude
	34.13 SI Conformance
	34.14 Administration of Systems
	34.14.1 Operations
	34.14.2 Operands

	35 My Height: A Model For Numeric Information
	36 The Grass-roots Basic Research Program Project
	36.1 The Proposal
	36.2 The Final Presentation

